Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Comput Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39142902

RESUMEN

In this work, the effects of two TiO2 polymorphs on the decomposition of ammonium perchlorate (NH4ClO4) were studied experimentally and theoretically. The interactions between AP and various surfaces of TiO2 were modeled using density functional theory (DFT) calculations. Specifically, the adsorption of AP on three rutile surfaces (1 1 0), (1 0 0), and (0 0 1), as well as two anatase surfaces (1 0 1), and (0 0 1) were modeled using cluster models, along with the decomposition of adsorbed AP into small molecules. The optimized complexes of the AP molecule on TiO2 surfaces were very stable, indicating strong covalent and hydrogen bonding interactions, leading to highly energetic adsorption reactions. The calculated energy of adsorption (ΔEads) ranged from -120.23 to -301.98 kJ/mol, with highly exergonic calculated Gibbs free energy (ΔGads) of reaction, and highly exothermic enthalpy of reaction (ΔHads). The decomposition of adsorbed AP was also found to have very negative ΔEdec values between -199.08 and -380.73 kJ/mol. The values of ΔGdec and ΔHdec reveal exergonic and exothermic reactions. The adsorption of AP on TiO2 surfaces anticipates the heat release of decomposition, in agreement with experimental results. The most common anatase surface, (1 0 1), was predicted to be more reactive for AP decomposition than the most stable rutile surface, (1 1 0), which was confirmed by experiments. DFT calculations show the mechanism for activation of the two TiO2 polymorphs is entropy driven.

2.
Phys Chem Chem Phys ; 24(19): 11501-11509, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35403629

RESUMEN

Harnessing aluminum oxidation energy requires navigating the particle's passivation shell composed of alumina. The shell is a barrier to aluminum oxidation but can also exothermically react with halogenated species and therefore contribute to the overall energy generated during aluminum particle combustion. Fluorination reactions with alumina have been studied because fluorine is abundant in binder formulations that commonly surround aluminum particles in an energetic mixture. However, iodine has emerged as an alternative halogenated-based binder or oxidizer because iodine gas provides ancillary benefits such as chemical neutralization of biological agents or sterilization of contaminated environments. This study used density functional theory (DFT) calculations to evaluate potential reaction pathways for aluminum-iodine combustion. Relative to fluorinated fragments such as HF and F-, the adsorption energies associated with HI and I- are nearly triple the exchange reaction energy available from fluorination reactions with alumina (-189 and -278 kJ mol-1 for HI and I-, respectively). However, exchange reactions between iodinated species and the alumina surface are energetically unfavorable. These results explain that through adsorption, alumina surface exothermic reactions with iodine are more energetic than with fluorine fragments. Experiments performed with differential scanning calorimetry (DSC) confirm the higher magnitude of energy generated for iodination compared with fluorination reactions with alumina. Additionally, strong adsorption energies can promote synthesis of new shell chemistries. Adsorption in solution will promote alumina dissolution and iodine precipitation reactions to produce hydroxyl complexes and iodinated species synthesized on the surface of the particle, thereby replacing alumina with alternative passivation shell chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA