Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938615

RESUMEN

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Asunto(s)
ARN Largo no Codificante , Árboles , Bosques , Suelo , Temperatura
2.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801913

RESUMEN

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Asunto(s)
Biodiversidad , Ecosistema , Entropía , Bosques , Plantas , Ecología , Clima Tropical
3.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576943

RESUMEN

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Asunto(s)
Biodiversidad , Clasificación/métodos , Bosques , Ríos , Árboles/clasificación , Brasil
4.
Sci Rep ; 8(1): 1003, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343741

RESUMEN

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Modelos Estadísticos , Dispersión de las Plantas/fisiología , Árboles/fisiología , Brasil , Chrysobalanaceae/fisiología , Fabaceae/fisiología , Humanos , Polygonaceae/fisiología
5.
Sci Adv ; 1(10): e1500936, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26702442

RESUMEN

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

6.
Acta amaz ; 32(4)2002.
Artículo en Portugués | LILACS-Express | LILACS, VETINDEX | ID: biblio-1454909

RESUMEN

Natural regeneration was studied of three hectares of "terra firme" in Coari Amazonas State, Brazil ( 40 51' 18" e 40 52' 16" S; 650 17' 58" e 650 20' 01"W) forest all individuals of height 0,1 - 3,0m and DBH less than 10cm.In the natural regeneration Protium subserratum Engl. stood out, with average values of 30,55% and Inga receptabilis (Vahl.) Wild. with 15,85%, Oenocarpus bacaba with 12,35% and Oenocarpus bataua with 11,42%, this among the arborescent species.


Neste trabalho estudou-se a regeneração natural de três hectares, em floresta ombrófila de terra - firme na região do rio Urucu no município de Coari -Am ( 40 51' 18" e 40 52' 16" S; 650 17' 58" e 650 20' 01" W), abordando todos os indivíduos com altura total maior ou igual a 10cm até 3,0m e diâmetro à altura do peito (DAP) menor que 10cm. As espécies que mais se destacaram foram o Protium subserratum Engl. com valores médios de 30,55%, Inga receptabilis (Vahl.) Wild.com 15,85%, Oenocarpus bacaba com 12,35% e Oenocarpus bataua com 11,42%, entre as espécies arbóreas.

7.
Acta amaz ; 31(4)out.-dez. 2001.
Artículo en Portugués | LILACS-Express | LILACS, VETINDEX | ID: biblio-1454837

RESUMEN

The aim of this paper is to characterize forest vegetation in the Urucu River region, a petroleum drilling area of PETROBRAS. This information may contribute to the organized and productive use of the forest, based on scientific knowledge, so that economic returns can be obtained while conserving the environment. All tree, vine and palm stems over 10 cm DBH were inventoried in three hectares. A total of 2241 individuals were found in 60 families, 225 genera and 577 species or morphospecies. Three measures of ecological importance abundance, dominance and frequency expressed as three separate percentages were summed to give an Importance Value Index (IVIE). The two highest IVI were for Eschweilera coracea (DC.) S. A. Mori, with 15% in hectare 2, and E. wachenheimii (Benoist) Sandwith, with 14% in hectare 3. The highest Family Importance Indices averaged across the three hectares were for Lecythidaceae (51.62%), Sapotaceae (40.24%) and Chrysobalanacaeae (24.56%).


O presente trabalho teve por objetivo principal caracterizar a vegetação da área de exploração de petróleo da PETROBRAS, no rio Urucu, bem como dar subsídios para a utilização da floresta de forma organizada e produtiva, baseada em conhecimentos científicos, de modo não somente a produzir resultados econômicos mas principalmente conservar o ambiente. Os três hectares de floresta inventariada sustentam 2.241 indivíduos, abrangendo árvores, palmeiras e cipós com DAP> 10 cm, distribuídos em 577 espécies, 225 gêneros e 60 famílias. Três medidas de importância ecológica abundância, dominância e freqüência expressas como três porcentagens, foram somadas para obter um índice de Valor de Importância (IVI). As duas espécies com os maiores IV1E, em toda a área pesquisada, foram Eschweilera coriacea (DC.) S. A. Mori, com 15% no hectare 2 e E. wachenheimii (Benoist) Sandwith, com 14% no hectare 3. As famílias que obtiveram os maiores índices de Valor de Importância (IVIF), em média, nos 3 hectares, foram Lecythidaceae (51,6%), Sapotaceae (40,2%) e Chrysobalanaceae (24,6%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA