Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982353

RESUMEN

Mast cells (MCs) represent a population of hematopoietic cells with a key role in innate and adaptive immunity and are well known for their detrimental role in allergic responses. Yet, MCs occur in low abundance, which hampers their detailed molecular analysis. Here, we capitalized on the potential of induced pluripotent stem (iPS) cells to give rise to all cells in the body and established a novel and robust protocol for human iPS cell differentiation toward MCs. Relying on a panel of systemic mastocytosis (SM) patient-specific iPS cell lines carrying the KIT D816V mutation, we generated functional MCs that recapitulate SM disease features: increased number of MCs, abnormal maturation kinetics and activated phenotype, CD25 and CD30 surface expression and a transcriptional signature characterized by upregulated expression of innate and inflammatory response genes. Therefore, human iPS cell-derived MCs are a reliable, inexhaustible, and close-to-human tool for disease modeling and pharmacological screening to explore novel MC therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mastocitosis Sistémica , Humanos , Mastocitosis Sistémica/diagnóstico , Mastocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Mutación
2.
Ann Hematol ; 100(12): 2943-2956, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34390367

RESUMEN

Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing-associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.


Asunto(s)
Antígenos CD34/genética , Trastornos Mieloproliferativos/genética , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Humanos , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Trombocitemia Esencial/genética
3.
Biomacromolecules ; 22(2): 454-466, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33284004

RESUMEN

Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.


Asunto(s)
Nanopartículas , Nanoestructuras , Animales , Celulosa , Células HeLa , Humanos , Ratones
4.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38278152

RESUMEN

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Policitemia Vera , Humanos , Ratones , Animales , Médula Ósea/patología , Megacariocitos , Janus Quinasa 2/genética , Policitemia Vera/genética , Policitemia Vera/patología , Fenotipo , Fibrosis , Mutación
5.
Cancer Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885318

RESUMEN

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA-sequencing revealed that CALRdel52 led to the expansion of TGF-ß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGF-ß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, while T cell depletion abrogated the protective effects conferred by neutralizing TGF-ß. TGF-ß1 reduced perforin and TNF-α production by T cells in vitro. TGF-ß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGF-ß1 expression. In four independent patient cohorts, TGF-ß1 expression was increased in the BM of MPN patients compared to healthy individuals, and the BM of MPN patients contained a higher frequency of Treg compared to healthy individuals. Together, this study identified an ERK/Sp1/TGF-ß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity.

6.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916882

RESUMEN

Transcription factors play a determining role in lineage commitment and cell differentiation. Interferon regulatory factor 8 (IRF8) is a lineage determining transcription factor in hematopoiesis and master regulator of dendritic cells (DC), an important immune cell for immunity and tolerance. IRF8 is prominently upregulated in DC development by autoactivation and controls both DC differentiation and function. However, it is unclear how Irf8 autoactivation is controlled and eventually limited. Here, we identified a novel long non-coding RNA transcribed from the +32 kb enhancer downstream of Irf8 transcription start site and expressed specifically in mouse plasmacytoid DC (pDC), referred to as lncIrf8. The lncIrf8 locus interacts with the lrf8 promoter and shows differential epigenetic signatures in pDC versus classical DC type 1 (cDC1). Interestingly, a sequence element of the lncIrf8 promoter, but not lncIrf8 itself, is crucial for mouse pDC and cDC1 differentiation, and this sequence element confers feedback inhibition of Irf8 expression. Taken together, in DC development Irf8 autoactivation is first initiated by flanking enhancers and then second controlled by feedback inhibition through the lncIrf8 promoter element in the +32 kb enhancer. Our work reveals a previously unrecognized negative feedback loop of Irf8 that orchestrates its own expression and thereby controls DC differentiation.


Asunto(s)
ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Retroalimentación , Factores Reguladores del Interferón/metabolismo , Diferenciación Celular/fisiología , Elementos de Facilitación Genéticos , Células Dendríticas
7.
Front Oncol ; 13: 1277453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941547

RESUMEN

Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.

8.
Stem Cell Res ; 60: 102732, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35279545

RESUMEN

The receptor tyrosine kinase c-KIT (CD117) has a key role in hematopoiesis and is a marker for endothelial and cardiac progenitor cells. In vivo, deficiency of c-KIT is lethal and therefore using CRISPR/Cas9 editing we generated heterozygous and homozygous c-KIT knockout human embryonic stem cell (ES cell) lines. The c-KIT knockout left ES cell pluripotency unaffected as shown by immunofluorescence and trilineage differentiation potential. Heterozygous and homozygous c-KIT knockouts showed complete loss of exon 17, resulting in ablation of c-KIT protein from the cell surface. c-KIT knockout ES cells provide a valuable tool for further investigating c-KIT biology.


Asunto(s)
Células Madre Embrionarias Humanas , Sistemas CRISPR-Cas/genética , Línea Celular , Heterocigoto , Homocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos
9.
Sci Rep ; 12(1): 2333, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149687

RESUMEN

Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Dendríticas/inmunología , Durapatita/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis , Poliésteres/farmacología , Andamios del Tejido , Adulto , Anciano , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Células Cultivadas , Durapatita/inmunología , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteogénesis/efectos de los fármacos , Impresión Tridimensional
10.
Stem Cell Reports ; 16(11): 2768-2783, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678208

RESUMEN

Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs.


Asunto(s)
Calreticulina/genética , Mutación del Sistema de Lectura , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Trastornos Mieloproliferativos/genética , Calreticulina/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica/métodos , Humanos , Megacariocitos/ultraestructura , Microscopía Electrónica de Transmisión , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trombopoyesis/genética
12.
Front Microbiol ; 7: 2030, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066356

RESUMEN

The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible influence of wild-type XfYgiT in the cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA