Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Physiol Biochem ; 54(4): 665-681, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32639114

RESUMEN

BACKGROUND/AIMS: Aortic stenosis-induced chronic pressure overload leads to cardiac dysfunction and congestive heart failure. The pathophysiological mechanisms of the myocardial impairment are multifactorial and include maladaptive ß-adrenergic signaling. Exercise training (ET) has been used as a non-pharmacological therapy for heart failure management. The present study tested the hypothesis that exercise training attenuates diastolic dysfunction through ß-adrenergic signaling preservation. METHODS: Wistar rats were submitted to ascending aortic stenosis (AS) surgery, and after 18 weeks, a moderate aerobic exercise training protocol was performed for ten weeks. RESULTS: ET attenuated diastolic dysfunction, evaluated by echocardiogram and isolated papillary muscle (IPM) assay. Also, ET reduced features of heart failure, cross-sectional cardiomyocyte area, and exercise intolerance, assessed by treadmill exercise testing. The ß2 adrenergic receptor protein expression was increased in AS rats independently of exercise. Interestingly, ET restored the protein levels of phosphorylated phospholamban at Serine 16 and preserved the ß-adrenergic receptor responsiveness as visualized by the lower myocardial compliance decline and time to 50% tension development and relaxation during ß-adrenergic stimulation in the IPM than untrained rats. Additionally, AS rats presented higher levels of TNFα and iNOS, which were attenuated by ET. CONCLUSION: Moderate ET improves exercise tolerance, reduces heart failure features, and attenuates diastolic dysfunction. In the myocardium, ET decreases the cross-sectional area of the cardiomyocyte and preserves the ß-adrenergic responsiveness, which reveals that the adjustments in ß-adrenergic signaling contribute to the amelioration of cardiac dysfunction by mild exercise training in aortic stenosis rats.


Asunto(s)
Estenosis Aórtica Supravalvular/metabolismo , Insuficiencia Cardíaca Diastólica/terapia , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/fisiología , Receptores Adrenérgicos beta/metabolismo , Animales , Estenosis Aórtica Supravalvular/terapia , Proteínas de Unión al Calcio/metabolismo , Ecocardiografía , Prueba de Esfuerzo , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Músculos Papilares/fisiología , Fosforilación , Ratas , Ratas Wistar , Receptores Adrenérgicos beta/fisiología , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Mol Cell Endocrinol ; 589: 112236, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608803

RESUMEN

INTRODUCTION: High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE: Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS: Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS: Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION: Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.


Asunto(s)
Proteínas de Unión al Calcio , Ratas Wistar , Factor de Necrosis Tumoral alfa , Animales , Masculino , Ratas , Proteínas de Unión al Calcio/metabolismo , Interleucina-6/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Fosforilación/efectos de los fármacos , Sacarosa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
3.
ScientificWorldJournal ; 2012: 780890, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22645452

RESUMEN

AIMS: To analyze the influence of hyperthyroidism on the gene expression and serum concentration of leptin, resistin, and adiponectin in obese animals. MAIN METHODS: Male Wistar rats were randomly divided into two groups: control (C)-fed with commercial chow ad libitum-and obese (OB)-fed with a hypercaloric diet. After group characterization, the OB rats continued receiving a hypercaloric diet and were randomized into two groups: obese animals (OB) and obese with 25 µg triiodothyronine (T(3))/100 BW (OT). The T(3) dose was administered every day for the last 2 weeks of the study. After 30 weeks the animals were euthanized. Samples of blood and adipose tissue were collected for biochemical and hormonal analyses as well as gene expression of leptin, resistin, and adiponectin. RESULTS: T(3) treatment was effective, increasing fT(3) levels and decreasing fT(4) and TSH serum concentration. Administration of T(3) promotes weight loss, decreases all fat deposits, and diminishes serum levels of leptin, resistin, and adiponectin by reducing their gene expression. CONCLUSIONS: Our results suggest that T(3) modulate serum and gene expression levels of leptin, resistin, and adiponectin in experimental model of obesity, providing new insights regarding the relationship between T(3) and adipokines in obesity.


Asunto(s)
Adiponectina/sangre , Hipertiroidismo/metabolismo , Leptina/sangre , Resistina/sangre , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Homeostasis , Masculino , Obesidad/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Tirotropina/sangre , Tiroxina/biosíntesis , Triyodotironina/biosíntesis
4.
J Cell Physiol ; 226(11): 2934-42, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21302294

RESUMEN

Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+) ) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+) -ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Cardiomiopatías/fisiopatología , Obesidad/complicaciones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/biosíntesis , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/etiología , Grasas de la Dieta/administración & dosificación , Diltiazem/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Obesidad/fisiopatología , Ratas , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores
5.
J Cardiovasc Transl Res ; 14(4): 674-684, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32246321

RESUMEN

Cirrhotic cardiomyopathy is a condition where liver cirrhosis is associated with cardiac dysfunction. Triggers and blockers of cirrhotic cardiomyopathy are poorly understood, which might compromise the prognosis of chronic liver disease patients. We tested whether exercise training would reduce liver damage induced by thioacetamide and prevent liver cirrhosis-associated cardiomyopathy. Wistar rats were divided into three groups: control, thioacetamide (TAA), or TAA plus exercise. Thioacetamide increased liver weight and serum alanine aminotransferase and aspartate aminotransferase levels. Also, TAA treatment was involved with hepatic nodule formation, fibrotic septa, inflammatory infiltration, and hepatocyte necrosis. The exercise group presented with a reduction in liver injury status. We found that liver injury was associated with disordered cardiac hypertrophy as well as diastolic and systolic dysfunction. Exercise training attenuated cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment. These results provided insights that exercise training can mitigate cirrhotic cardiomyopathy phenotype. Graphical Abstract Exercise training attenuated liver injury as well as cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment.


Asunto(s)
Cardiomiopatías/prevención & control , Terapia por Ejercicio , Cirrosis Hepática/terapia , Acondicionamiento Físico Humano , Animales , Función del Atrio Izquierdo , Biomarcadores/sangre , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Tolerancia al Ejercicio , Humanos , Hígado/enzimología , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Miocardio/patología , Ratas Wistar , Tioacetamida , Función Ventricular Izquierda
6.
Can J Physiol Pharmacol ; 87(9): 666-73, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19794517

RESUMEN

Previous studies have shown that food restriction promotes myocardial dysfunction in rats. However, the molecular mechanisms that are responsible are unclear. We investigated the role of sarcoplasmic reticulum Ca2+-ATPase (SERCA2) on myocardial performance in food-restricted rats. Male Wistar-Kyoto rats, 60 days old, were fed a control or restricted diet (daily energy intake reduced to 50% of the control) for 90 days. Expression of Serca2a, phospholamban (PLB), Na+/Ca2+ exchanger (NCX), and thyroid hormone receptor (TRalpha1, TRbeta1) mRNA was determined by quantitative PCR. SERCA2 activity was measured by using 20 micromol/L cyclopiazonic acid (CPA) in a left ventricular papillary muscle preparation during isometric contraction in basal conditions and during post-rest contraction. Serum concentrations of thyroxine (T4) and thyrotropin (TSH) were also determined. The 50%-restricted diet reduced body and ventricular weight and serum T4 and TSH levels. The interaction of CPA and food restriction reduced peak developed tension and maximum rate of tension decline (-dT/dt), but increased the resting tension intensity response during post-rest contraction. PLB and NCX mRNA were upregulated and TRalpha1 mRNA was downregulated by food restriction. These results suggest that food restriction promotes myocardial dysfunction related to impairment of sarcoplasmic reticulum Ca2+ uptake as a result of a hypothyroid state.


Asunto(s)
Restricción Calórica/efectos adversos , Cardiomiopatías/metabolismo , Privación de Alimentos , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/biosíntesis , Animales , Calcio/metabolismo , Cardiomiopatías/etiología , Ventrículos Cardíacos/metabolismo , Masculino , Contracción Miocárdica/fisiología , Músculos Papilares/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis , Ratas , Ratas Endogámicas WKY , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Receptores alfa de Hormona Tiroidea/biosíntesis , Receptores beta de Hormona Tiroidea/biosíntesis , Hormonas Tiroideas/sangre
7.
Can J Cardiol ; 26(8): 423-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20931095

RESUMEN

The mechanisms by which diet-induced obesity cause remodeling and cardiac dysfunction are still unknown. Interstitial collagen and myocardial ultrastructure are important in the development of left ventricular hypertrophy, and are essential to the adaptive and maladaptive changes associated with obesity. Thus, the accumulation of collagen and ultrastructural damage may contribute to cardiac dysfunction in obesity. The purpose of the present study was to investigate cardiac function in a rat model of diet-induced obesity and to test the hypothesis that cardiac dysfunction induced by obesity is related to myocardial collagen deposition and ultrastructural damage. Thirty-day-old male Wistar rats were fed standard (control [C]) and hypercaloric diets (obese [Ob]) for 15 weeks. Cardiac function was evaluated by echocardiogram and isolated left ventricle papillary muscle. Cardiac morphology was assessed by histology and electron microscopy. Compared with C rats, Ob rats had increased body fat, systolic blood pressure and area under the curve for glucose, leptin and insulin plasma concentrations. Echocardiographic indexes indicated that Ob rats had increased left ventricular mass, increased systolic stress and depressed systolic function. Analysis of the isolated papillary muscle was consistent with higher myocardial stiffness in Ob compared with C rats. The Ob rats had an increase in myocardial collagen and marked ultrastructural changes compared with C rats. Obesity promotes pathological cardiac remodeling with systolic dysfunction and an increase in myocardial stiffness, which, in turn, is probably related to afterload elevation and cardiac fibrosis. Obesity also causes damage to myocardial ultrastructure, but its effect on myocardial function needs to be further clarified.


Asunto(s)
Células Musculares/ultraestructura , Obesidad/fisiopatología , Disfunción Ventricular/fisiopatología , Remodelación Ventricular/fisiología , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Masculino , Microscopía Electrónica , Obesidad/complicaciones , Ratas , Ratas Wistar , Disfunción Ventricular/diagnóstico , Disfunción Ventricular/etiología
8.
Cardiovasc Pathol ; 19(5): e175-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19914094

RESUMEN

BACKGROUND: This study compared the influence of fasting/refeeding cycles and food restriction on rat myocardial performance and morphology. METHODS: Sixty-day-old male Wistar rats were submitted to food ad libitum (C), 50% food restriction (R50), and fasting/refeeding cycles (RF) for 12 weeks. Myocardial function was evaluated under baseline conditions and after progressive increase in calcium and isoproterenol. Myocardium ultrastructure was examined in the papillary muscle. RESULTS: Fasting/refeeding cycles maintained rat body weight and left ventricle weight between control and food-restricted rats. Under baseline conditions, the time to peak tension (TPT) was more prolonged in R50 than in RF and C rats. Furthermore, the maximum tension decline rate (-dT/dt) increased less in R50 than in RF with calcium elevation. While the R50 group showed focal changes in many muscle fibers, such as the disorganization or loss of myofilaments, polymorphic mitochondria with disrupted cristae, and irregular appearance or infolding of the plasma membrane, the RF rats displayed few alterations such as loss or disorganization of myofibrils. CONCLUSION: Food restriction promotes myocardial dysfunction, not observed in RF rats, and higher morphological damage than with fasting/refeeding. The increase in TPT may be attributed possibly to the disorganization and loss of myofibrils; however, the mechanisms responsible for the alteration in -dT/dt in R50 needs to be further clarified.


Asunto(s)
Ayuno/fisiología , Privación de Alimentos/fisiología , Músculos Papilares/fisiología , Músculos Papilares/ultraestructura , Animales , Electrofisiología , Masculino , Microscopía Electrónica de Transmisión , Contracción Muscular/fisiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA