Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Tissue Res ; 388(3): 489-502, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35451648

RESUMEN

Collagen extracted from fishes has been appearing as an alternative for commercial porcine and bovine collagen and it has been considered interesting especially for membrane manufacturing in tissue engineering. Despite the positive in vitro effects of fish collagen membranes, there is still no understanding of all the benefits that this natural biomaterial plays in the wound healing process, due to the lack of compilation of the results obtained in animal studies. In this sense, the purpose of this study was to perform a systematic review of the literature to examine the effects of fish collagen membranes for skin wound healing in experimental models of skin wound. The search was carried out according to the orientations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the descriptors of the Medical Subject Headings (MeSH) were defined: "fish," collagen," "skin," and "in vivo". A total of 10 articles were retrieved from the databases PubMed and Scopus. After the elegibility analyses, this review covers the different origins of fish collagen reported in the different papers from the beginning of 2015 through the middle of 2021. The results were based mainly on histological analysis and macroscopic evaluation, and fish skin collagen was responsible for improving the wound healing rate and the process of reepithelization and collagen deposition. In conclusion, fish skin collagen has shown positive results in in vivo studies and may be a potential biomaterial in tissue engineering.


Asunto(s)
Colágeno , Cicatrización de Heridas , Animales , Materiales Biocompatibles/farmacología , Bovinos , Colágeno/farmacología , Peces , Piel , Porcinos
2.
J Cosmet Laser Ther ; 24(1-5): 9-21, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35856592

RESUMEN

Increasingly, there is an attempt to minimize expression lines through esthetic procedures, and radiofrequency (RF) is one of the therapeutic modalities. This article aims to systematically review the literature on the different types of RF treatment in clinical trials and in variables related to the aging process. This systematic review included 21 articles that treated 354 people with different physical characteristics. The most used RF was the fractional followed by the non-ablative RF. There was a large discrepancy in relation to the types and parameters. A parameter that did not show so much divergence was the temperature, which was between 38°C and 44°C. The main temporary adverse reactions reported by the authors were as follows: discomfort, pain, erythema, hyperpigmentation, crusting, swelling, edema, and purple and acneic appearance of the skin. Finally, our study concluded that non-ablative and ablative RF was reported to rejuvenate and improve the features of skin in all skin types.


Asunto(s)
Rejuvenecimiento , Envejecimiento de la Piel , Humanos , Piel , Ondas de Radio/efectos adversos , Eritema , Edema
3.
Mar Biotechnol (NY) ; 22(3): 357-366, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32335738

RESUMEN

One of the most promising strategies to improve the biological performance of bone grafts is the combination of different biomaterials. In this context, the aim of this study was to evaluate the effects of the incorporation of marine spongin (SPG) into Hydroxyapatite (HA) for bone tissue engineering proposals. The hypothesis of the current study is that SPG into HA would improve the biocompatibility of material and would have a positive stimulus into bone formation. Thus, HA and HA/SPG materials were produced and scanning electron microscopy (SEM) analysis was performed to characterize the samples. Also, in order to evaluate the in vivo tissue response, samples were implanted into a tibial bone defect in rats. Histopathological, immunohistochemistry, and biomechanical analyses were performed after 2 and 6 weeks of implantation to investigate the effects of the material on bone repair. The histological analysis demonstrated that composite presented an accelerated material degradation and enhanced newly bone formation. Additionally, histomorphometry analysis showed higher values of %BV/TV and N.Ob/T.Ar for HA/SPG. Runx-2 immunolabeling was higher for the composite group and no difference was found for VEGF. Moreover, the biomechanical analysis demonstrated similar values for all groups. These results indicated the potential of SPG to be used as an additive to HA to improve the biological performance for bone regeneration applications. However, further long-term studies should be carried out to provide additional information regarding the material degradation and bone regeneration.


Asunto(s)
Huesos/efectos de los fármacos , Colágeno/farmacología , Durapatita/farmacología , Poríferos/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles , Huesos/lesiones , Masculino , Ratas Wistar , Tibia/efectos de los fármacos , Tibia/lesiones , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA