Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(5): 820-833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600356

RESUMEN

Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.


Asunto(s)
Factor Activador de Células B , Interleucina-1beta , Mieloma Múltiple , Neutrófilos , Células del Estroma , Microambiente Tumoral , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Humanos , Microambiente Tumoral/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Células del Estroma/metabolismo , Células del Estroma/inmunología , Factor Activador de Células B/metabolismo , Interleucina-1beta/metabolismo , Activación Neutrófila , Factor de Transcripción STAT3/metabolismo , Médula Ósea/inmunología , Médula Ósea/patología
2.
Nat Immunol ; 22(6): 769-780, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34017122

RESUMEN

Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Células Madre Mesenquimatosas/inmunología , Mieloma Múltiple/inmunología , Recurrencia Local de Neoplasia/inmunología , Microambiente Tumoral/inmunología , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Médula Ósea/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/prevención & control , Cultivo Primario de Células , Estudios Prospectivos , RNA-Seq , Análisis de la Célula Individual , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
3.
Cell ; 157(2): 369-381, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24703711

RESUMEN

Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.


Asunto(s)
Cromosomas Humanos Par 3 , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Factor de Transcripción GATA2/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Proto-Oncogenes/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Inversión Cromosómica , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Regiones Promotoras Genéticas , Activación Transcripcional , Translocación Genética
4.
Hum Genomics ; 13(1): 37, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429796

RESUMEN

BACKGROUND: While genome-wide association studies (GWAS) of multiple myeloma (MM) have identified variants at 23 regions influencing risk, the genes underlying these associations are largely unknown. To identify candidate causal genes at these regions and search for novel risk regions, we performed a multi-tissue transcriptome-wide association study (TWAS). RESULTS: GWAS data on 7319 MM cases and 234,385 controls was integrated with Genotype-Tissue Expression Project (GTEx) data assayed in 48 tissues (sample sizes, N = 80-491), including lymphocyte cell lines and whole blood, to predict gene expression. We identified 108 genes at 13 independent regions associated with MM risk, all of which were in 1 Mb of known MM GWAS risk variants. Of these, 94 genes, located in eight regions, had not previously been considered as a candidate gene for that locus. CONCLUSIONS: Our findings highlight the value of leveraging expression data from multiple tissues to identify candidate genes responsible for GWAS associations which provide insight into MM tumorigenesis. Among the genes identified, a number have plausible roles in MM biology, notably APOBEC3C, APOBEC3H, APOBEC3D, APOBEC3F, APOBEC3G, or have been previously implicated in other malignancies. The genes identified in this TWAS can be explored for follow-up and validation to further understand their role in MM biology.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mieloma Múltiple/genética , Transcriptoma/genética , Desaminasa APOBEC-3G/genética , Aminohidrolasas/genética , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Perfilación de la Expresión Génica , Genotipo , Humanos , Mieloma Múltiple/patología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
5.
Genes Chromosomes Cancer ; 57(8): 420-429, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29696703

RESUMEN

Multiple myeloma (MM) is the second most common hematologic cancer, characterized by abnormal accumulation of plasma cells in the bone marrow. The extensive biological and clinical heterogeneity of MM hinders effective treatment and etiology research. Several molecular classification systems of prognostic impact have been proposed, but they do not predict the response to treatment nor do they correlate to plasma cell development pathways. Here we describe the classification of MM into two distinct subtypes based on the expression levels of a gene module coexpressed with MCL1 (MCL1-M), a regulator of plasma cell survival. The classification system enabled prediction of the prognosis and the response to bortezomib-based therapy. Moreover, the two MM subtypes were associated with two different plasma cell differentiation pathways (enrichment of a preplasmablast signature versus aberrant expression of B cell genes). 1q gain, harboring 63 of the 87 MCL1-M members including MCL1, was found in about 80% of the MM with upregulated MCL1-M expression. Clonal analysis showed that 1q gain tended to occur as an early clonal event. Members of MCL1-M captured both MM cell-intrinsically acting signals and the signals regulating the interaction between MM cells with bone marrow microenvironment. MCL1-M members were co-expressed in mouse germinal center B cells. Together, these findings indicate that MCL1-M may play previously inadequately recognized, initiating role in the pathogenesis of MM. Our findings suggest that MCL1-M signature-based molecular clustering of MM constitutes a solid framework toward understanding the etiology of this disease and establishing personalized care. Article Summary: A pathogenic mechanism-guided molecular classification would facilitate treatment decision and etiology research of multiple myeloma. On the basis of the expression levels of a gene module coexpressed with MCL1, we have established a classification scheme assigning multiple myeloma into two subtypes with distinct prognosis, treatment responses and pathogenic backgrounds.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Biomarcadores Farmacológicos , Bortezomib/administración & dosificación , Bases de Datos Genéticas , Dexametasona/administración & dosificación , Doxorrubicina/administración & dosificación , Humanos , Mieloma Múltiple/clasificación , Mieloma Múltiple/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Células Plasmáticas/patología , Valor Predictivo de las Pruebas , Pronóstico , Inhibidores de Proteasoma/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Transducción de Señal , Vincristina/administración & dosificación
6.
Blood ; 128(7): 959-70, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27307294

RESUMEN

The anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance. In a cohort of 102 patients treated with daratumumab monotherapy (16 mg/kg), we found that pretreatment levels of CD38 expression on MM cells were significantly higher in patients who achieved at least partial response (PR) compared with patients who achieved less than PR. However, cell surface expression of the CIPs, CD46, CD55, and CD59, was not associated with clinical response. In addition, CD38 expression was reduced in both bone marrow-localized and circulating MM cells, following the first daratumumab infusion. CD38 expression levels on MM cells increased again following daratumumab discontinuation. In contrast, CD55 and CD59 levels were significantly increased on MM cells only at the time of progression. All-trans retinoic acid increased CD38 levels and decreased CD55 and CD59 expression on MM cells from patients who developed daratumumab resistance, to approximately pretreatment values. This resulted in significant enhancement of daratumumab-mediated complement-dependent cytotoxicity. Together, these data demonstrate an important role for CD38 and CIP expression levels in daratumumab sensitivity and suggest that therapeutic combinations that alter CD38 and CIP expression levels should be investigated in the treatment of MM. These trials were registered at www.clinicaltrials.gov as #NCT00574288 (GEN501) and #NCT01985126 (SIRIUS).


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Inactivadores del Complemento/metabolismo , Resistencia a Antineoplásicos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Anticuerpos Monoclonales/farmacología , Antígenos CD55 , Antígenos CD59 , Células Clonales , Citotoxicidad Inmunológica/inmunología , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Tretinoina/farmacología
7.
Blood ; 126(17): 1996-2004, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26330243

RESUMEN

Patients with multiple myeloma have variable survival and require reliable prognostic and predictive scoring systems. Currently, clinical and biological risk markers are used independently. Here, International Staging System (ISS), fluorescence in situ hybridization (FISH) markers, and gene expression (GEP) classifiers were combined to identify novel risk classifications in a discovery/validation setting. We used the datasets of the Dutch-Belgium Hemato-Oncology Group and German-speaking Myeloma Multicenter Group (HO65/GMMG-HD4), University of Arkansas for Medical Sciences-TT2 (UAMS-TT2), UAMS-TT3, Medical Research Council-IX, Assessment of Proteasome Inhibition for Extending Remissions, and Intergroupe Francophone du Myelome (IFM-G) (total number of patients: 4750). Twenty risk markers were evaluated, including t(4;14) and deletion of 17p (FISH), EMC92, and UAMS70 (GEP classifiers), and ISS. The novel risk classifications demonstrated that ISS is a valuable partner to GEP classifiers and FISH. Ranking all novel and existing risk classifications showed that the EMC92-ISS combination is the strongest predictor for overall survival, resulting in a 4-group risk classification. The median survival was 24 months for the highest risk group, 47 and 61 months for the intermediate risk groups, and the median was not reached after 96 months for the lowest risk group. The EMC92-ISS classification is a novel prognostic tool, based on biological and clinical parameters, which is superior to current markers and offers a robust, clinically relevant 4-group model.


Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Perfilación de la Expresión Génica , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Anciano , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Hibridación Fluorescente in Situ , Agencias Internacionales , Masculino , Persona de Mediana Edad , Modelos Teóricos , Mieloma Múltiple/mortalidad , Estadificación de Neoplasias , Pronóstico , Factores de Riesgo , Tasa de Supervivencia
9.
Haematologica ; 101(12): 1451-1459, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27903712

RESUMEN

The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies. By the classical approach, a CD19-/CD45low/-/CD38high/CD138+ malignant plasma cell, but not the CD19+/CD38low/- memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC compartment. Using a new approach, analysis of c-DNA libraries from CD19+/CD27+/CD38- single cells has identified clonotypic memory B cell, suggested to be the cell of origin. This is consistent with multiple myeloma being a multistep hierarchical process before or during clinical presentation. We anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin, initiation, maintenance, and evolution of multiple myeloma. These terms are in accordance with recent (2012) consensus statements on the definitions, assays, and nomenclature of cancer stem cells, which is technically precise without completely abolishing established terminology. We expect that this operational model will be useful for future reporting of parameters used to identify and characterize the multiple myeloma stem cells. We strongly recommend that these parameters include validated standard technologies, reproducible assays, and, most importantly, supervised prospective sampling of selected biomaterial which reflects clinical stages, disease spectrum, and therapeutic outcome. This framework is key to the characterization of the cellular architecture of multiple myeloma and its use in precision medicine.


Asunto(s)
Mieloma Múltiple/etiología , Mieloma Múltiple/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores , Plasticidad de la Célula , Autorrenovación de las Células , Resistencia a Antineoplásicos , Variación Genética , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fenotipo
10.
Blood ; 121(4): 624-7, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23233657

RESUMEN

Recently, cereblon (CRBN) expression was found to be essential for the activity of thalidomide and lenalidomide. In the present study, we investigated whether the clinical efficacy of thalidomide in multiple myeloma is associated with CRBN expression in myeloma cells. Patients with newly diagnosed multiple myeloma were included in the HOVON-65/GMMG-HD4 trial, in which postintensification treatment in 1 arm consisted of daily thalidomide (50 mg) for 2 years. Gene-expression profiling, determined at the start of the trial, was available for 96 patients who started thalidomide maintenance. In this patient set, increase of CRBN gene expression was significantly associated with longerprogression-free survival (P = .005). In contrast, no association between CRBN expression and survival was observed in the arm with bortezomib maintenance. We conclude that CRBN expression may be associated with the clinical efficacy of thalidomide. This trial has been registered at the Nederlands Trial Register (www.trialregister.nl) as NTR213; at the European Union Drug Regulating Authorities Clinical Trials (EudraCT) as 2004-000944-26; and at the International Standard Randomized Controlled Trial Number (ISRCTN) as 64455289.


Asunto(s)
Antineoplásicos/uso terapéutico , Quimioterapia de Mantención , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Péptido Hidrolasas/genética , Talidomida/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales , Expresión Génica , Humanos , Mieloma Múltiple/mortalidad , Resultado del Tratamiento , Ubiquitina-Proteína Ligasas
11.
Blood ; 116(14): 2543-53, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20574050

RESUMEN

To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138(+) plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


Asunto(s)
Perfilación de la Expresión Génica , Mieloma Múltiple/genética , Células Plasmáticas/metabolismo , Adolescente , Adulto , Anciano , Ensayos Clínicos Fase III como Asunto , Análisis por Conglomerados , Europa (Continente) , Humanos , Persona de Mediana Edad , Mieloma Múltiple/clasificación , Mieloma Múltiple/diagnóstico , Sindecano-1/metabolismo , Adulto Joven
13.
Am J Clin Pathol ; 157(4): 494-497, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643211

RESUMEN

OBJECTIVES: To compare flow cytometric minimal residual disease (MRD) data obtained using the EuroFlow approach, including the CD38-multiepitope (ME) antibody or the VS38c antibody. METHODS: We evaluated 29 bone marrow samples from patients with multiple myeloma (MM), of whom 15 had received daratumumab within the past 6 months. We evaluated MRD data and fluorescence intensities. RESULTS: Qualitative MRD data were 100% concordant between the 2 approaches. In MRD-positive samples (n = 14), MRD levels showed an excellent correlation (R2 = 0.999). Whereas VS38c staining was strong in both normal plasma cells and MM cells, independent of daratumumab treatment, staining intensities for CD38 were lower in MM cells compared with normal plasma cells, and on both cell types CD38 expression was significantly reduced in daratumumab-treated patients. CONCLUSIONS: Both CD38-ME and VS38c allow reliable MRD detection in MM patients, but the high expression of VS38c allows easier identification of MM cells, especially in daratumumab-treated patients.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Anticuerpos Antineoplásicos , Glicoproteínas de Membrana , Mieloma Múltiple , ADP-Ribosil Ciclasa 1/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antineoplásicos/inmunología , Recuento de Células , Epítopos , Citometría de Flujo , Humanos , Glicoproteínas de Membrana/inmunología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/inmunología , Neoplasia Residual/diagnóstico , Neoplasia Residual/inmunología , Células Plasmáticas
14.
J Nucl Med ; 63(7): 1008-1013, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35086897

RESUMEN

The International Myeloma Working Group recently fully incorporated 18F-FDG PET into multiple myeloma (MM) diagnosis and response evaluation. Moreover, a few studies demonstrated the prognostic value of several biomarkers extracted from this imaging at baseline. Before these 18F-FDG PET biomarkers could be fully endorsed as risk classifiers by the hematologist community, further characterization of underlying molecular aspects was necessary. Methods: Reported prognostic biomarkers (18F-FDG avidity, SUVmax, number of focal lesions, presence of paramedullary disease [PMD] or extramedullary disease) were extracted from 18F-FDG PET imaging at baseline in a group of 139 patients from CASSIOPET, a companion study of the CASSIOPEIA cohort (ClinicalTrials.gov identifier NCT02541383). Transcriptomic analyses using RNA sequencing were realized on sorted bone marrow plasma cells from the same patients. An association with a high-risk gene expression signature (IFM15), molecular classification, progression-free survival, a stringent clinical response, and minimal residual disease negativity were explored. Results:18F-FDG PET results were positive in 79.4% of patients; 14% and 11% of them had PMD and extramedullary disease, respectively. Negative 18F-FDG PET results were associated with lower levels of expression of hexokinase 2 (HK2) (fold change, 2.1; adjusted P = 0.04) and showed enrichment for a subgroup of patients with a low level of bone disease. Positive 18F-FDG PET results displayed 2 distinct signatures: either high levels of expression of proliferation genes or high levels of expression of GLUT5 and lymphocyte antigens. PMD and IFM15 were independently associated with a lower level of progression-free survival, and the presence of both biomarkers defined a group of "double-positive" patients at very high risk of progression. PMD and IFM15 were related neither to minimal residual disease assessment nor to a stringent clinical response. Conclusion: Our study confirmed and extended the association between imaging biomarkers and transcriptomic programs in MM. The combined prognostic value of PMD and a high-risk IFM15 signature may help define MM patients with a very high risk of progression.


Asunto(s)
Fluorodesoxiglucosa F18 , Mieloma Múltiple , Biomarcadores , Perfilación de la Expresión Génica , Humanos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/genética , Neoplasia Residual , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos
15.
J Clin Oncol ; 40(27): 3132-3150, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35357885

RESUMEN

PURPOSE: Primary plasma cell leukemia (pPCL) is an aggressive subtype of multiple myeloma, which is distinguished from newly diagnosed multiple myeloma (NDMM) on the basis of the presence of ≥ 20% circulating tumor cells (CTCs). A molecular marker for pPCL is currently lacking, which could help identify NDMM patients with high-risk PCL-like disease, despite not having been recognized as such clinically. METHODS: A transcriptomic classifier for PCL-like disease was bioinformatically constructed and validated by leveraging information on baseline CTC levels, tumor burden, and tumor transcriptomics from 154 patients with NDMM included in the Cassiopeia or HO143 trials and 29 patients with pPCL from the EMN12/HO129 trial. Its prognostic value was assessed in an independent cohort of 2,139 patients with NDMM from the HOVON-65/GMMG-HD4, HOVON-87/NMSG-18, EMN02/HO95, MRC-IX, Total Therapy 2, Total Therapy 3, and MMRF CoMMpass studies. RESULTS: High CTC levels were associated with the expression of 1,700 genes, independent of tumor burden (false discovery rate < 0.05). Of these, 54 genes were selected by leave-one-out cross-validation to construct a transcriptomic classifier representing PCL-like disease. This not only demonstrated a sensitivity of 93% to identify pPCL in the validation cohort but also classified 10% of NDMM tumors as PCL-like. PCL-like MM transcriptionally and cytogenetically resembled pPCL, but presented with significantly lower CTC levels and tumor burden. Multivariate analyses in NDMM confirmed the significant prognostic value of PCL-like status in the context of Revised International Staging System stage, age, and treatment, regarding both progression-free (hazard ratio, 1.64; 95% CI, 1.30 to 2.07) and overall survival (hazard ratio, 1.89; 95% CI, 1.42 to 2.50). CONCLUSION: pPCL was identified on the basis of a specific tumor transcriptome, which was also present in patients with high-risk NDMM, despite not being clinically leukemic. Incorporating PCL-like status into current risk models in NDMM may improve prognostic accuracy.


Asunto(s)
Leucemia de Células Plasmáticas , Mieloma Múltiple , Humanos , Leucemia de Células Plasmáticas/genética , Mieloma Múltiple/tratamiento farmacológico , Pronóstico , Transcriptoma , Resultado del Tratamiento
16.
Haematologica ; 96(11): 1662-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21791470

RESUMEN

BACKGROUND: In multiple myeloma, expression of cancer testis antigens may provide prognostic markers and potential targets for immunotherapy. Expression at relapse has not yet been evaluated for a large panel of cancer testis antigens which can be classified by varying expression in normal tissue: restricted to testis, expressed in testis and brain and not restricted but selectively expressed in testis. DESIGN AND METHODS: Evaluation of cancer testis antigen expression was made in newly diagnosed multiple myeloma cases (HOVON-65/GMMG-HD4 trial; n = 320) and in relapse cases (APEX, SUMMIT, CREST trials; n = 264). Presence of expression using Affymetrix GeneChips was determined for 123 cancer testis antigens. Of these 87 had a frequency of more than 5% in the newly diagnosed and relapsed patients, and were evaluated in detail. RESULTS: Tissue restriction was known for 58 out of 87 cancer testis antigens. A significantly lower frequency of presence calls in the relapsed compared to newly diagnosed cases was found for 3 out of 13 testis restricted genes, 2 out of 7 testis/brain restricted genes, and 17 out of 38 testis selective genes. MAGEC1, MAGEB2 and SSX1 were the most frequent testis-restricted cancer testis antigens in both data sets. Multivariate analysis demonstrated that presence of MAGEA6 and CDCA1 were clearly associated with shorter progression free survival, and presence of MAGEA9 with shorter overall survival in the set of newly diagnosed cases. In the set of relapse cases, presence of CTAG2 was associated with shorter progression free survival and presence of SSX1 with shorter overall survival. CONCLUSIONS: Relapsed multiple myeloma reveals extensive cancer testis antigen expression. Cancer testis antigens are confirmed as useful prognostic markers in newly diagnosed multiple myeloma patients and in relapsed multiple myeloma patients. The HOVON-65/GMMG-HD4 trial is registered under Dutch trial register n. NTR-213. CREST, SUMMIT and APEX trials were registered under ns. M34100-024, M34100-025 and NCT00049478/NCT00048230, respectively.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Biomarcadores de Tumor/biosíntesis , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/metabolismo , Mieloma Múltiple/mortalidad , Neoplasias Testiculares , Supervivencia sin Enfermedad , Humanos , Inmunoterapia , Masculino , Mieloma Múltiple/prevención & control , Recurrencia , Tasa de Supervivencia
17.
Lancet Oncol ; 11(11): 1057-65, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20864405

RESUMEN

BACKGROUND: Bortezomib-induced peripheral neuropathy is a dose-limiting toxicity in patients with multiple myeloma, often requiring adjustment of treatment and affecting quality of life. We investigated the molecular profiles of early-onset (within one treatment cycle) versus late-onset (after two or three treatment cycles) bortezomib-induced peripheral neuropathy and compared them with those of vincristine-induced peripheral neuropathy during the induction phase of a prospective phase 3 trial. METHODS: In the induction phase of the HOVON-65/GMMG-HD4 trial, patients (aged 18-65 years) with newly diagnosed Salmon and Durie stage 2 or 3 multiple myeloma were randomly assigned to three cycles of bortezomib-based or vincristine-based induction treatment. We analysed the gene expression profiles and single-nucleotide polymorphisms (SNPs) of pretreatment samples of myeloma plasma cells and peripheral blood, respectively. This study is registered, number ISRCTN64455289. FINDINGS: We analysed gene expression profiles of myeloma plasma cells from 329 (39%) of 833 patients at diagnosis, and SNPs in DNA samples from 369 (44%) patients. Early-onset bortezomib-induced peripheral neuropathy was noted in 20 (8%) patients, and 63 (25%) developed the late-onset type. Early-onset and late-onset vincristine-induced peripheral neuropathy was noted in 11 (4%) and 17 (7%) patients, respectively. Significant genes in myeloma plasma cells from patients that were associated with early-onset bortezomib-induced peripheral neuropathy were the enzyme coding genes RHOBTB2 (upregulated by 1·59 times; p=4·5×10(-5)), involved in drug-induced apoptosis, CPT1C (1·44 times; p=2·9×10(-7)), involved in mitochondrial dysfunction, and SOX8 (1·68 times; p=4·28×10(-13)), involved in development of peripheral nervous system. Significant SNPs in the same patients included those located in the apoptosis gene caspase 9 (odds ratio [OR] 3·59, 95% CI 1·59-8·14; p=2·9×10(-3)), ALOX12 (3·50, 1·47-8·32; p=3·8×10(-3)), and IGF1R (0·22, 0·07-0·77; p=8·3×10(-3)). In late-onset bortezomib-induced peripheral neuropathy, the significant genes were SOD2 (upregulated by 1·18 times; p=9·6×10(-3)) and MYO5A (1·93 times; p=3·2×10(-2)), involved in development and function of the nervous system. Significant SNPs were noted in inflammatory genes MBL2 (OR 0·49, 95% CI 0·26-0·94; p=3·0×10(-2)) and PPARD (0·35, 0·15-0·83; p=9·1×10(-3)), and DNA repair genes ERCC4 (2·74, 1·56-4·84; p=1·0×10(-3)) and ERCC3 (1·26, 0·75-2·12; p=3·3×10(-3)). By contrast, early-onset vincristine-induced peripheral neuropathy was characterised by upregulation of genes involved in cell cycle and proliferation, including AURKA (3·31 times; p=1·04×10(-2)) and MKI67 (3·66 times; p=1·82×10(-3)), and the presence of SNPs in genes involved in these processes-eg, GLI1 (rs2228224 [0·13, 0·02-0·97, p=1·18×10(-2)] and rs2242578 [0·14, 0·02-1·12, p=3·00×10(-2)]). Late-onset vincristine-induced peripheral neuropathy was associated with the presence of SNPs in genes involved in absorption, distribution, metabolism, and excretion-eg, rs1413239 in DPYD (3·29, 1·47-7·37, 5·40×10(-3)) and rs3887412 in ABCC1 (3·36, 1·47-7·67, p=5·70×10(-3)). INTERPRETATION: Our results strongly suggest an interaction between myeloma-related factors and the patient's genetic background in the development of treatment-induced peripheral neuropathy, with different molecular pathways being implicated in bortezomib-induced and vincristine-induced peripheral neuropathy.


Asunto(s)
Antineoplásicos/efectos adversos , Ácidos Borónicos/efectos adversos , Mieloma Múltiple/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Pirazinas/efectos adversos , Vincristina/efectos adversos , Adolescente , Adulto , Anciano , Bortezomib , Distribución de Chi-Cuadrado , Europa (Continente) , Perfilación de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Estadificación de Neoplasias , Oportunidad Relativa , Enfermedades del Sistema Nervioso Periférico/genética , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
18.
Cancers (Basel) ; 13(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066382

RESUMEN

Multiple myeloma (MM) is characterized by loss of anti-tumor T cell immunity. Despite moderate success of treatment with anti-PD1 antibodies, effective treatment is still challenged by poor T cell-mediated control of MM. To better enable identification of shortcomings in T-cell immunity that relate to overall survival (OS), we interrogated transcriptomic data of bone marrow samples from eight clinical trials (n = 1654) and one trial-independent patient cohort (n = 718) for multivariate analysis. Gene expression of V-domain Ig suppressor of T cell activation (VISTA) was observed to correlate to OS [hazard ratio (HR): 0.72; 95% CI: 0.61-0.83; p = 0.005]. Upon imaging the immune contexture of MM bone marrow tissues (n = 22) via multiplex in situ stainings, we demonstrated that VISTA was expressed predominantly by CD11b+ myeloid cells. The combination of abundance of VISTA+, CD11b+ cells in the tumor but not stromal tissue together with low presence of CD8+ T cells in the same tissue compartment, termed a high VISTA-associated T cell exclusion score, was significantly associated with short OS [HR: 16.6; 95% CI: 4.54-62.50; p < 0.0001]. Taken together, the prognostic value of a combined score of VISTA+, CD11b+ and CD8+ cells in the tumor compartment could potentially be utilized to guide stratification of MM patients for immune therapies.

19.
J Mol Diagn ; 23(1): 120-129, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152501

RESUMEN

Multiple myeloma (MM) is an incurable plasma cell cancer with a large variability in survival. Patients with MM classified as high risk by the SKY92 gene expression classifier are at high risk of relapse and short survival. Analytical validation of the SKY92 assay was performed with primary bone marrow specimens from 12 patients with MM and 7 reference cell line specimens. The SKY92 results were 100% concordant with the reference and/or their expected result for sensitivity, specificity, microarray stability, and RLT buffer stability. The SKY92 results were 90% concordant for primary specimen stability, 96.4% concordant for intermediate precision, and 80% to 100% concordant for RNA stability. For the cell-line reproducibility, the concordance was at least 92.9%, except for one near-cut point specimen. For the clinical specimen reproducibility, the concordance was 100%, except for two near-cut point specimens. Three independent laboratories were concordant in ≥77.8% and ≥92.9% of experiments for patient specimens and cell lines, respectively. Statistical acceptance thresholds were developed as Δ ≤1.48 (change in SKY92 score) and SD ≤0.45 (SD across SKY92 scores). Using the Clinical and Laboratory Standards Institute method of choice (EP05-A2/A3), restricted maximum likelihood, the observed Δ values (0 to 1.14) and SDs (0.22 to 0.31) passed acceptance criteria. Thus, we successfully present analytical validation for the SKY92 assay as a prognostic molecular test for individual patients with MM.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Técnicas de Diagnóstico Molecular/métodos , Mieloma Múltiple/genética , Transcriptoma , Biomarcadores de Tumor/genética , Donantes de Sangre , Estudios de Casos y Controles , Línea Celular Tumoral , Humanos , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Pronóstico , Recurrencia , Reproducibilidad de los Resultados , Medición de Riesgo , Sensibilidad y Especificidad
20.
Blood Adv ; 5(8): 2196-2215, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33890981

RESUMEN

Cell surface expression levels of GPRC5D, an orphan G protein-coupled receptor, are significantly higher on multiple myeloma (MM) cells, compared with normal plasma cells or other immune cells, which renders it a promising target for immunotherapeutic strategies. The novel GPRC5D-targeting T-cell redirecting bispecific antibody, talquetamab, effectively kills GPRC5D+ MM cell lines in the presence of T cells from both healthy donors or heavily pretreated MM patients. In addition, talquetamab has potent anti-MM activity in bone marrow (BM) samples from 45 patients, including those with high-risk cytogenetic aberrations. There was no difference in talquetamab-mediated killing of MM cells from newly diagnosed, daratumumab-naïve relapsed/refractory (median of 3 prior therapies), and daratumumab-refractory (median of 6 prior therapies) MM patients. Tumor cell lysis was accompanied by T-cell activation and degranulation, as well as production of pro-inflammatory cytokines. High levels of GPRC5D and high effector:target ratio were associated with improved talquetamab-mediated lysis of MM cells, whereas an increased proportion of T cells expressing PD-1 or HLA-DR, and elevated regulatory T-cell (Treg) counts were associated with suboptimal killing. In cell line experiments, addition of Tregs to effector cells decreased MM cell lysis. Direct contact with bone marrow stromal cells also impaired the efficacy of talquetamab. Combination therapy with daratumumab or pomalidomide enhanced talquetamab-mediated lysis of primary MM cells in an additive fashion. In conclusion, we show that the GPRC5D-targeting T-cell redirecting bispecific antibody talquetamab is a promising novel antimyeloma agent. These results provide the preclinical rationale for ongoing studies with talquetamab in relapsed/refractory MM.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Humanos , Activación de Linfocitos , Mieloma Múltiple/tratamiento farmacológico , Linfocitos T Reguladores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA