Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 33(26)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35240592

RESUMEN

Additive manufacturing can realize almost any designed geometry, enabling the fabrication of innovative products for advanced applications. Local electrochemical plating is a powerful approach for additive manufacturing of metal microstructures; however, previously reported data have been mostly obtained with copper, and only a few cases have been reported with other elements. In this study, we assessed the ability of fluidic force microscopy to produce Ni-Mn and Ni-Co alloy structures. Once the optimal deposition potential window was determined, pillars with relatively smooth surfaces were obtained. The printing process was characterized by printing rates in the range of 50-60 nm s-1. Cross-sections exposed by focused ion beam showed highly dense microstructures, while the corresponding face scan with energy-dispersive x-ray spectroscopy spectra revealed a uniform distribution of alloy components.

2.
Nano Lett ; 21(21): 9093-9101, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699726

RESUMEN

Nanoscale 3D printing is attracting attention as an alternative manufacturing technique for a variety of applications from electronics and nanooptics to sensing, nanorobotics, and energy storage. The constantly shrinking critical dimension in state-of-the-art technologies requires fabrication of complex conductive structures with nanometer resolution. Electrochemical techniques are capable of producing impurity-free metallic conductors with superb electrical and mechanical properties, however, true nanoscale resolution (<100 nm) remained unattainable. Here, we set new a benchmark in electrochemical 3D printing. By employing nozzles with dimensions as small as 1 nm, we demonstrate layer-by-layer manufacturing of 25 nm diameter voxels. Full control of the printing process allows adjustment of the feature size on-the-fly, printing tilted, and overhanging structures. On the basis of experimental evidence, we estimate the limits of electrochemical 3D printing and discuss the origins of this new resolution frontier.


Asunto(s)
Electrónica , Impresión Tridimensional , Conductividad Eléctrica , Técnicas Electroquímicas
3.
Adv Funct Mater ; 30(28): 1910491, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32684902

RESUMEN

Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device-grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution ≤10 µm is presented. Standardized sets of samples are studied by cross-sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects-a significant step toward the potential establishment of AM techniques in microfabrication.

4.
RSC Adv ; 13(20): 13575-13585, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152573

RESUMEN

As the microelectronics field pushes to increase device density through downscaling component dimensions, various novel micro- and nano-scale additive manufacturing technologies have emerged to expand the small scale design space. These techniques offer unprecedented freedom in designing 3D circuitry but have not yet delivered device-grade materials. To highlight the complex role of processing on the quality and microstructure of AM metals, we report the electrical properties of micrometer-scale copper interconnects fabricated by Fluid Force Microscopy (FluidFM) and Electrohydrodynamic-Redox Printing (EHD-RP). Using a thin film-based 4-terminal testing chip developed for the scope of this study, the electrical resistance of as-printed metals is directly related to print strategies and the specific morphological and microstructural features. Notably, the chip requires direct synthesis of conductive structures on an insulating substrate, which is shown for the first time in the case of FluidFM. Finally, we demonstrate the unique ability of EHD-RP to tune the materials resistivity by one order of magnitude solely through printing voltage. Through its novel electrical characterization approach, this study offers unique insight into the electrical properties of micro- and submicrometer-sized copper interconnects and steps towards a deeper understanding of micro AM metal properties for advanced electronics applications.

5.
Micromachines (Basel) ; 11(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861400

RESUMEN

We describe our force-controlled 3D printing method for layer-by-layer additive micromanufacturing (µAM) of metal microstructures. Hollow atomic force microscopy cantilevers are utilized to locally dispense metal ions in a standard 3-electrode electrochemical cell, enabling a confined electroplating reaction. The deflection feedback signal enables the live monitoring of the voxel growth and the consequent automation of the printing protocol in a layer-by-layer fashion for the fabrication of arbitrary-shaped geometries. In a second step, we investigated the effect of the free parameters (aperture diameter, applied pressure, and applied plating potential) on the voxel size, which enabled us to tune the voxel dimensions on-the-fly, as well as to produce objects spanning at least two orders of magnitude in each direction. As a concrete example, we printed two different replicas of Michelangelo's David. Copper was used as metal, but the process can in principle be extended to all metals that are macroscopically electroplated in a standard way.

6.
Chem Commun (Camb) ; 55(1): 51-54, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30516183

RESUMEN

Engineered viruses are finding an increasing number of applications in basic, translational research and materials science. Genetic and chemical engineering of capsids represents a key point for tailoring the properties of viral particles, but the synthetic efforts and limits accompanying these processes still hinder their usability. Here, a single-step highly selective biocatalytic functionalization approach is described, providing a general platform for virus-acrylate hybrid particles. The tobacco mosaic virus (TMV) and the bacteriophage M13 have been successfully modified via laccase induced free radical formation on the tyrosine residues through single electron oxidation as the initiating step and the free radicals subsequently react with acrylate-based monomers. This new approach can be extended to other biomolecular assemblies with surface exposed tyrosine residues, when the introduction of new functionalities is desired.


Asunto(s)
Bacteriófago M13/metabolismo , Cápside/metabolismo , Lacasa/metabolismo , Virus del Mosaico del Tabaco/metabolismo , Acrilatos/metabolismo , Biocatálisis , Cápside/química , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA