Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Lasers Surg Med ; 51(8): 735-741, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30889289

RESUMEN

OBJECTIVES: Photoepilation is a commonly used technology in home-use devices (HUDs) and in professional systems to remove unwanted body hair using pulses of laser or intense pulsed light (IPL). Albeit HUDs and professional systems operate at different fluences and treatment regimes, both demonstrate high hair reduction. The underlying mechanisms, however, remain unknown partly due to high divergence of the existing literature data. The objective of this study was to develop an ex vivo photoepilation model with a set of criteria evaluating response to light pulses; and to investigate dose-response behavior of hair follicles (HFs) subjected to a range of fluences. METHODS: After ex vivo treatment (single pulse, 810 nm, 1.7-26.4 J/cm2 , 4-64 ms pulse) human anagen HFs were isolated and maintained in culture for 7-10 days. Response to light was evaluated based on gross-morphology and histological examination (H&E and TUNEL stainings). RESULTS: HFs treated ex vivo demonstrated a dose-dependent response to light with five distinct classes defined by macroscopic and microscopic criteria. Fluences below 13.2 J/cm2 provoked catagen-like transition, higher fluences resulted in coagulation in HF compartments. CONCLUSION: Observed changes in the HF organ culture model were reflected by clinical efficacy. The developed photoepilation model provides an easy and fast method to predict clinical efficacy and permanency of light-based hair removal devices. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Folículo Piloso/patología , Folículo Piloso/efectos de la radiación , Remoción del Cabello/métodos , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Adulto , Anciano , Análisis de Varianza , Relación Dosis-Respuesta en la Radiación , Femenino , Remoción del Cabello/instrumentación , Humanos , Técnicas In Vitro , Persona de Mediana Edad , Muestreo
2.
Lasers Surg Med ; 51(6): 481-490, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30681170

RESUMEN

OBJECTIVES: This review has the following objectives: Firstly, it provides an explanation of the evolution of laser/intense pulsed light (IPL) hair reduction modalities from high fluence professional devices to low fluence home-use appliances. Secondly, it summarises published literature reviews on home-use devices (HUDs) as evidence of their growing credibility. Thirdly, it proposes mechanistic differences in light delivery regimes and the resulting divergences in mode of action. MATERIALS AND METHODS: An extensive literature search was performed to review the progress of laser/IPL-induced hair reduction and determine what evidence is available to explain the mode of action of professional and HUDs for hair removal. Establishing the likely biological mode of action of professional high-fluence systems versus home-use low-fluence appliances was performed by combining data obtained using ex vivo hair follicle (HF) organ culture and the clinical results involving human participants. RESULTS: Significant basic science and clinical evidence has been published to confirm the clinical efficacy and technical safety of many laser and IPL home-use devices for hair removal. Clearly, HUDs are different compared to professional systems both in terms of fluence per pulse and in terms of biological mechanisms underlying hair removal. Here we presented data showing that a single low fluence pulse of both 810 nm laser (6.6 J/cm2 , 16 ms) and IPL (9 J/cm2 , 15 ms and 6.8 J/cm2 , 1.9 ms) leads to induction of catagen transition. Catagen transition was characterized by morphological changes similar to what occurs in vivo with occasional detection of apoptosis in the dermal papilla and outer root sheath cells. This suggests that high hair reduction can be expected in vivo and longer-term treatment might result in HF miniaturization due to a cumulative effect on the dermal papilla and outer root sheath cells. In line with this hypothesis, in this review we demonstrate that long-term application of a commercially-available home-use IPL appliance resulted in persistent hair reduction (80%) one year after last treatment. These data are in line with what was previously reported in the literature, where clinical studies with home-use IPL appliances demonstrated high efficacy of hair reduction on female legs, armpits and bikini zones, with full hair regrowth after four treatments following cessation of IPL administration. Limitations of HUDs include lack of hair clearance for very dark skin types and low speed of treatment compared with professional devices. Numerous uncontrolled and controlled clinical efficacy studies and technical safety investigations on consumer-use appliances support many of the leading manufacturers' claims. ANALYSIS & CONCLUSIONS: Manufacturers make consumer appliances safe and easy to use by considering "human factors," needs and capabilities of a variety of users. Safety is of primary concern to manufacturers, regulators and standards bodies as these appliances may be accessible to children or their use attempted on unsuitable skin types without full awareness of potential side effects. Consumer cosmetic appliances are provided with warnings and obvious safety notices describing the nature of any ocular or dermal hazard and precautions for reducing risk of accidental injury, infection, etc. HUDs employing optical energy are provided with design and engineering controls such as safety switches, alarms and sensors to prevent their incorrect operation or eye exposure. In-vivo studies demonstrated that low fluence home-use hair removal devices can result in high hair reduction efficacy after a short treatment regime, while prolonged and less frequent (once in six weeks) maintenance treatment over a year can lead to high and sustained hair reduction even one year after cessation of treatment. Home-use hair removal devices can be a useful adjunct to professional in-office treatments with high professional awareness. There are sufficient positive arguments for practitioners to make the case to patients for HUDs as "companion" products to professional treatments. In addition, devices for hair removal can be used effectively as stand-alone products by the consumer if they are willing to adopt a regime of regular or frequent use. Further clinical studies involving dynamic observation of HF cycle stage and type (terminal vs. vellus) over the total duration of treatment, for example, using biopsies or non-invasive imaging are necessary to confirm the proposed mode of action of low fluence pulses in a combination with treatment and maintenance regimes. Lasers Surg. Med. 51:481-490, 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Remoción del Cabello , Tratamiento de Luz Pulsada Intensa , Humanos
3.
J Neurointerv Surg ; 15(3): 283-287, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35478176

RESUMEN

BACKGROUND: Cone-beam computed tomography (CBCT) imaging of the brain can be performed in the angiography suite to support various neurovascular procedures. Relying on CBCT brain imaging solely, however, still lacks full diagnostic confidence due to the inferior image quality compared with CT and various imaging artifacts that persist even with modern CBCT. OBJECTIVE: To perform a detailed evaluation of image artifact improvement using a new CBCT protocol which implements a novel dual-axis 'butterfly' trajectory. METHODS: Our study included 94 scans from 47 patients who received CBCT imaging for assessment of either ischemia or hemorrhage during a neurovascular procedure. Both a traditional uni-axis 'circular' and novel dual-axis 'butterfly' protocol were performed on each patient (same-patient control). Each brain scan was divided into six regions and scored out of 3 based on six artifacts originating from various physics-based and patient-based sources. RESULTS: The dual-axis trajectory produces CBCT images with significantly fewer image artifacts than the traditional circular scan (whole brain average artifact score, AS: 0.20 vs 0.33), with the greatest improvement in bone beam hardening (AS: 0.13 vs 0.78) and cone-beam artifacts (AS: 0.04 vs 0.55). CONCLUSIONS: Recent developments in CBCT imaging protocols have significantly improved image artifacts, which has improved diagnostic confidence for stroke and supports a direct-to-angiography suite transfer approach for patients with acute ischemic stroke.


Asunto(s)
Artefactos , Accidente Cerebrovascular Isquémico , Humanos , Algoritmos , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Neurointerv Surg ; 15(e2): e223-e228, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36564201

RESUMEN

BACKGROUND: Imaging assessment for acute ischemic stroke (AIS) patients in the angiosuite using cone beam CT (CBCT) has created increased interest since endovascular treatment became the first line therapy for proximal vessel occlusions. One of the main challenges of CBCT imaging in AIS patients is degraded image quality due to motion artifacts. This study aims to evaluate the prevalence of motion artifacts in CBCT stroke imaging and the effectiveness of a novel motion artifact correction algorithm for image quality improvement. METHODS: Patients presenting with acute stroke symptoms and considered for endovascular treatment were included in the study. CBCT scans were performed using the angiosuite X-ray system. All CBCT scans were post-processed using a motion artifact correction algorithm. Motion artifacts were scored before and after processing using a 4-point scale. RESULTS: We prospectively included 310 CBCT scans from acute stroke patients. 51% (n=159/310) of scans had motion artifacts, with 24% being moderate to severe. The post-processing algorithm improved motion artifacts in 91% of scans with motion (n=144/159), restoring clinical diagnostic capability in 34%. Overall, 76% of the scans were sufficient for clinical decision-making before correction, which improved to 93% (n=289/310) after post-processing with our algorithm. CONCLUSIONS: Our results demonstrate that CBCT motion artifacts are significantly reduced using a novel post-processing algorithm, which improved brain CBCT image quality and diagnostic assessment for stroke. This is an important step on the road towards a direct-to-angio approach for endovascular thrombectomy (EVT) treatment.


Asunto(s)
Artefactos , Accidente Cerebrovascular Isquémico , Humanos , Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Cabeza , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
5.
Eur J Radiol ; 138: 109645, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33725654

RESUMEN

PURPOSE: Cone beam CT (CBCT) imaging assessment of acute ischemic stroke (AIS) patients with large-vessel occlusion (LVO) in the angiosuite may improve stroke workflow and decrease time to recanalization. In order for this workflow to gain widespread acceptance, current CBCT imaging needs further development to improve image quality. Our study aimed to compare the image quality of a new CBCT protocol performed directly in the angiosuite with imaging from multidetector CT as a gold standard. METHODS: AIS patients with an LVO who were candidates for endovascular treatment were prospectively included in this study. Following conventional multidetector CT (MDCT), patients underwent unenhanced cone beam CT (XperCT, Philips) imaging in the angiosuite, using two different protocols: a standard 20.8 s XperCT and/or an improved 10.4 s XperCT protocol. Images were evaluated using both qualitative and quantitative methods. RESULTS: We included 65 patients in the study. Patients received CBCT imaging prior to endovascular treatment; 18 patients were assessed with a standard 20.8 s protocol scans and 47 with a newer 10.4 s scan. The quantitative analysis showed that the mean contrast-to-noise ratio (CNR) was significantly higher for the newer 10.4 s protocol compared with the 20.8 s protocol (2.08 +/- 0.64 vs. 1.15 +/- 0.27, p < 0.004) and the mean image noise was significantly lower for the 10.4 s XperCTs when compared with the 20.8 s XperCTs (6.30 +/- 1.34 vs. 7.82 +/- 2.03, p=<0.003). Qualitative analysis, including 6 measures of image quality, demonstrated that 74.1 % of the 10.4 s XperCT scans were ranked as 'Acceptable' for assessing parenchymal imaging in AIS patients(scoring 3-5 points on a 5-point Likert-scale), compared with 32.4 % of the standard 20.8 s XperCT and 100 % of the MDCT scans. Compared to the MDCT studies, 83 % of the 10.4 s XperCT scans were deemed sufficient image quality for a direct-to-angiosuite selection, compared to only 11 % for the standard 20.8 s scans. The largest image quality improvements included grey/white matter differentiation (59 % improvement), and reduction of image noise and artefacts (63 % & 50 % improvement, respectively). CONCLUSIONS: Continued advances in cone-beam CT allow marked improvements in image quality for the assessment of brain parenchyma, which supports a direct-to-angiosuite approach for AIS patients eligible for thrombectomy treatment.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Isquemia Encefálica/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico , Humanos , Fantasmas de Imagen , Estudios Prospectivos , Accidente Cerebrovascular/diagnóstico por imagen
6.
Circulation ; 119(2): 290-7, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19118259

RESUMEN

BACKGROUND: Previous attempts in heart valve tissue engineering (TE) failed to produce autologous valve replacements with native-like mechanical behavior to allow for systemic pressure applications. Because hypoxia and insulin are known to promote protein synthesis by adaptive cellular responses, a physiologically relevant oxygen tension and insulin supplements were applied to the growing heart valve tissues to enhance their mechanical properties. METHODS AND RESULTS: Scaffolds of rapid-degrading polyglycolic acid meshes coated with poly-4-hydroxybutyrate were seeded with human saphenous vein myofibroblasts. The tissue-engineered constructs were cultured under normal oxygen tension (normoxia) or hypoxia (7% O(2)) and incubated with or without insulin. Glycosaminoglycan production in the constructs approached that of native values under the influence of hypoxia and under the influence of insulin. Both insulin and hypoxia were associated with enhanced matrix production and improved mechanical properties; however, a synergistic effect was not observed. Although the amount of collagen and cross-links in the engineered tissues was still lower than that in native adult human aortic valves, constructs cultured under hypoxic conditions reached native human aortic valve levels of tissue strength and stiffness after 4 weeks of culturing. CONCLUSIONS: These results indicate that oxygen tension may be a key parameter for the achievement of sufficient tissue quality and mechanical integrity in tissue-engineered heart valves. Engineered tissues of such strength, based on rapid-degrading polymers, have not been achieved to date. These findings bring the potential use of tissue-engineered heart valves for systemic applications a step closer and represent an important improvement in heart valve tissue engineering.


Asunto(s)
Válvula Aórtica/citología , Válvula Aórtica/fisiología , Técnicas de Cultivo de Célula/métodos , Prótesis Valvulares Cardíacas , Ingeniería de Tejidos/métodos , Válvula Aórtica/efectos de los fármacos , Fenómenos Biomecánicos/fisiología , Hipoxia de la Célula/fisiología , Células Cultivadas , Prótesis Valvulares Cardíacas/normas , Humanos , Insulina/farmacología , Factores de Tiempo , Ingeniería de Tejidos/instrumentación
7.
Tissue Eng Part C Methods ; 19(3): 205-15, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22889149

RESUMEN

In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.


Asunto(s)
Bioprótesis , Células Endoteliales/fisiología , Prótesis Valvulares Cardíacas , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Células Cultivadas , Fuerza Compresiva/fisiología , Módulo de Elasticidad/fisiología , Células Endoteliales/citología , Estudios de Factibilidad , Humanos , Estrés Mecánico
8.
Biomech Model Mechanobiol ; 11(7): 1015-27, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22246054

RESUMEN

In tissue engineered heart valves, cell-mediated stress development during culture results in leaflet retraction at time of implantation. This tissue retraction is partly active due to traction forces exerted by the cells and partly passive due to release of residual stress in the extracellular matrix and the cells. Within this study, we unraveled the passive and active contributions of cells and matrix to generated force and retraction in engineered heart valve tissues. Tissue engineered rectangular strips, fabricated from PGA/P4HB scaffolds and seeded with human myofibroblasts, were cultured for 4 weeks, after which the cellular contribution was changed at different levels. Elimination of the active cellular traction forces was achieved with Cytochalasin D and inhibition of the Rho-associated kinase pathway. Both active and passive cellular contributions were eliminated by lysation and/or decellularization of the tissue. Maximum cell activity was reached by increasing the fetal bovine serum concentration to 50%. The generated force decreased ~20% after elimination of the active cellular component, ~25% when the passive cellular component was removed as well and remained unaffected by increased serum concentrations. Passive retraction accounted for ~60% of total retraction, of which ~15% was residual stress in the matrix and ~45% was passive cell retraction. Cell traction forces accounted for the remainder ~40% of the retraction. Full activation of the cells increased retraction by ~45%. These results illustrate the importance of the cells in the process of tissue retraction, not only actively retracting the tissue, but also in a passive manner to a large extent.


Asunto(s)
Válvulas Cardíacas/fisiología , Miofibroblastos/citología , Técnicas de Cultivo de Órganos/métodos , Ingeniería de Tejidos/métodos , Animales , Fenómenos Biomecánicos , Bovinos , Técnicas de Cultivo de Célula/métodos , Citocalasina D/química , Diseño de Equipo , Matriz Extracelular/metabolismo , Prótesis Valvulares Cardíacas , Humanos , Suero/metabolismo , Estrés Mecánico , Quinasas Asociadas a rho/metabolismo
9.
Tissue Eng Part A ; 18(3-4): 221-31, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21902601

RESUMEN

Cardiovascular tissue engineering has shown considerable progress, but in vitro tissue conditioning to stimulate the development of a functional extracellular matrix still needs improvement. We investigated the environmental factor oxygen concentration for its potential to increase the amount of collagen and collagen cross-links, and therefore improve tissue quality. Cardiovascular tissue engineered (TE) constructs, made of rapidly degrading PGA/P4HB scaffold seeded with human vascular-derived cells, were cultured at 7%, 4%, 2%, 0.5% O(2) for 4 weeks and compared to control cultures at 21% O(2). Tissue properties were evaluated by measuring the extracellular matrix production and mechanical behavior. The culture environment was monitored closely and the oxygen gradient throughout the constructs was simulated with a theoretical model. TE constructs cultured at 21%, 7% and 4% O(2) showed dense and homogeneous tissue formation with comparable strength, stiffness, collagen and collagen cross-link content. At 2% O(2), collagen content and stiffness decreased, whereas at 0.5% O(2), hardly any tissue was formed. Overall, tissue properties deteriorated at the lowest oxygen concentrations, opposing our hypothesis that was based on previous culture at low oxygen concentrations. Further research will focus on establishing the balance between applied oxygen conditions (concentration and exposure time) and optimal tissue outcome.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/crecimiento & desarrollo , Oxígeno/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Fenómenos Biomecánicos/efectos de los fármacos , Sistema Cardiovascular/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Lactatos/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Técnicas de Cultivo de Tejidos
10.
Tissue Eng Part C Methods ; 17(10): 983-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21609192

RESUMEN

Autologous heart valve tissue engineering relies on extracellular matrix production by cells seeded into a degrading scaffold material. The cells naturally exert traction forces to their surroundings, and due to an imbalance between scaffold, tissue, and these traction forces, stress is generated within the tissue. This stress results in compaction during culture and retraction of the leaflets at release of constraints, causing shape loss of the heart valve leaflets. In the present study, an in vitro model system has been developed to quantify stress generation, compaction, and retraction during culture and after release of constraints. Tissue-engineered (TE) constructs based on polyglycolic acid/poly-4-hydroxybutyrate scaffolds seeded with human vascular-derived cells were cultured for 4 weeks. Compaction in width was measured during culture, stress generation was measured during culture and after release of constraints at week 4, and contraction was measured after release of constraints at week 4. Both compaction and stress generation started after 2 weeks of culture and continued up to week 4. TE constructs compacted up to half of their original width and reached an internal stress of 6-8 kPa at week 4, which resulted in a retraction of 36%. The model system has provided a useful tool to unravel and optimize the balance between the different aspects of TE constructs to develop functional TE leaflets.


Asunto(s)
Prótesis Valvulares Cardíacas , Válvulas Cardíacas/fisiología , Modelos Biológicos , Estrés Mecánico , Ingeniería de Tejidos/métodos , Animales , Fenómenos Biomecánicos , Calibración , Humanos , Ovinos , Técnicas de Cultivo de Tejidos , Andamios del Tejido/química
11.
J Appl Physiol (1985) ; 109(5): 1483-91, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20847132

RESUMEN

In vivo functionality of cardiovascular tissue engineered constructs requires in vitro control of tissue development to obtain a well developed extracellular matrix (ECM). We hypothesize that ECM formation and maturation is stimulated by culturing at low oxygen concentrations. Gene expression levels of monolayers of human vascular-derived myofibroblasts, exposed to 7, 4, 2, 1, and 0.5% O(2) (n = 9 per group) for 24 h, were measured for vascular endothelial growth factor (VEGF), procollagen α1(I) and α1(III), elastin, and cross-link enzymes lysyl oxidase (LOX) and lysyl hydroxylase 2 (LH2). After 4 days of exposure to 7, 2, and 0.5% O(2) (n = 3 per group), protein synthesis was evaluated. All analyses were compared with control cultures at 21% O(2). Human myofibroblasts turned to hypoxia-driven gene expression, indicated by VEGF expression, at oxygen concentrations of 4% and lower. Gene expression levels of procollagen α1(I) and α1(III) increased to 138 ± 26 and 143 ± 19%, respectively, for all oxygen concentrations below 4%. At 2% O(2), LH2 and LOX gene expression levels were higher than control cultures (340 ± 53 and 136 ± 29%, respectively), and these levels increased even further with decreasing oxygen concentrations (611 ± 176 and 228 ± 45%, respectively, at 0.5% O(2)). Elastin gene expression levels remained unaffected. Collagen synthesis and LH2 protein levels increased at oxygen concentrations of 2% and lower. Oxygen concentrations below 4% induce enhanced ECM production by human myofibroblasts. Implementation of these results in cardiovascular tissue engineering approaches enables in vitro control of tissue development.


Asunto(s)
Proteínas de la Matriz Extracelular/biosíntesis , Miofibroblastos/metabolismo , Oxígeno/metabolismo , Ingeniería de Tejidos , Hipoxia de la Célula , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación de la Expresión Génica , Humanos , Persona de Mediana Edad , Regeneración , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA