Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 608(7922): 275-286, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948707

RESUMEN

The East Antarctic Ice Sheet contains the vast majority of Earth's glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections. Some marine-based catchments that underwent notable mass loss during past warm periods are losing mass at present but most projections indicate increased accumulation across the East Antarctic Ice Sheet over the twenty-first century, keeping the ice sheet broadly in balance. Beyond 2100, high-emissions scenarios generate increased ice discharge and potentially several metres of sea-level rise within just a few centuries, but substantial mass loss could be averted if the Paris Agreement to limit warming below 2 degrees Celsius is satisfied.


Asunto(s)
Modelos Climáticos , Calentamiento Global , Cubierta de Hielo , Temperatura , Regiones Antárticas , Predicción , Calentamiento Global/historia , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XXI , Elevación del Nivel del Mar/historia , Elevación del Nivel del Mar/estadística & datos numéricos
2.
Nature ; 580(7801): 81-86, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238944

RESUMEN

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1-5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82° S during the Turonian-Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120-1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/historia , Clima , Bosque Lluvioso , Temperatura , Regiones Antárticas , Fósiles , Sedimentos Geológicos/química , Historia Antigua , Modelos Teóricos , Nueva Zelanda , Polen , Esporas/aislamiento & purificación
3.
Nature ; 561(7723): 383-386, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30232420

RESUMEN

Understanding ice sheet behaviour in the geological past is essential for evaluating the role of the cryosphere in the climate system and for projecting rates and magnitudes of sea level rise in future warming scenarios1-4. Although both geological data5-7 and ice sheet models3,8 indicate that marine-based sectors of the East Antarctic Ice Sheet were unstable during Pliocene warm intervals, the ice sheet dynamics during late Pleistocene interglacial intervals are highly uncertain3,9,10. Here we provide evidence from marine sedimentological and geochemical records for ice margin retreat or thinning in the vicinity of the Wilkes Subglacial Basin of East Antarctica during warm late Pleistocene interglacial intervals. The most extreme changes in sediment provenance, recording changes in the locus of glacial erosion, occurred during marine isotope stages 5, 9, and 11, when Antarctic air temperatures11 were at least two degrees Celsius warmer than pre-industrial temperatures for 2,500 years or more. Hence, our study indicates a close link between extended Antarctic warmth and ice loss from the Wilkes Subglacial Basin, providing ice-proximal data to support a contribution to sea level from a reduced East Antarctic Ice Sheet during warm interglacial intervals. While the behaviour of other regions of the East Antarctic Ice Sheet remains to be assessed, it appears that modest future warming may be sufficient to cause ice loss from the Wilkes Subglacial Basin.


Asunto(s)
Calentamiento Global/historia , Cubierta de Hielo , Regiones Antárticas , Sedimentos Geológicos/química , Historia Antigua , Calor , Agua de Mar/análisis
4.
Proc Natl Acad Sci U S A ; 117(2): 889-894, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31888997

RESUMEN

The Southern Ocean is a key region for the overturning and mixing of water masses within the global ocean circulation system. Because Southern Ocean dynamics are influenced by the Southern Hemisphere westerly winds (SWW), changes in the westerly wind forcing could significantly affect the circulation and mixing of water masses in this important location. While changes in SWW forcing during the Holocene (i.e., the last ∼11,700 y) have been documented, evidence of the oceanic response to these changes is equivocal. Here we use the neodymium (Nd) isotopic composition of absolute-dated cold-water coral skeletons to show that there have been distinct changes in the chemistry of the Southern Ocean water column during the Holocene. Our results reveal a pronounced Middle Holocene excursion (peaking ∼7,000-6,000 y before present), at the depth level presently occupied by Upper Circumpolar Deep Water (UCDW), toward Nd isotope values more typical of Pacific waters. We suggest that poleward-reduced SWW forcing during the Middle Holocene led to both reduced Southern Ocean deep mixing and enhanced influx of Pacific Deep Water into UCDW, inducing a water mass structure that was significantly different from today. Poleward SWW intensification during the Late Holocene could then have reinforced deep mixing along and across density surfaces, thus enhancing the release of accumulated CO2 to the atmosphere.

5.
Anal Chem ; 92(16): 11232-11241, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32662265

RESUMEN

The application of Pb isotopes to marine geochemistry is currently hindered by challenges associated with the analysis of Pb isotopes in seawater. The current study evaluates the performance of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements of seawater Pb isotope compositions following Pb separation by either solid-phase extraction with Nobias Chelate PA-1 resin or coprecipitation with Mg(OH)2 and using either a Pb double spike or external normalization to Tl for mass bias correction. The four analytical combinations achieve results of similar quality when measuring 1-7 ng of seawater Pb, with reproducibilities (two standard deviations, 2SD) of 100-1200 ppm for 206Pb/207Pb and 208Pb/207Pb and 300-1700 ppm for ratios involving the minor 204Pb isotope. All four procedures enable significantly improved sample throughput compared to an established thermal ionization mass spectrometry (TIMS) double-spike method and produce unbiased seawater Pb isotope compositions with similar or improved precision. Nobias extraction is preferable to coprecipitation due to its greater analytical throughput and suitability for analyses of large seawater samples with high Si(OH)4 contents. The most accurate Pb isotope data are produced following Nobias extraction and double-spike correction as such analyses are least susceptible to matrix effects. However, Nobias extraction with Tl normalization constitutes an attractive alternative as, unlike the double-spike procedure, only a single mass spectrometric measurement is required, which improves analytical throughput and optimizes Pb consumption for analysis. Despite the advantages of solid-phase extraction, coprecipitation represents a useful Pb separation technique for samples with low to moderate Si contents as it is inexpensive, simple to implement, and the data are only marginally less accurate, especially when combined with a Pb double spike for mass bias correction.


Asunto(s)
Isótopos/análisis , Plomo/análisis , Agua de Mar/análisis , Isótopos/aislamiento & purificación , Plomo/aislamiento & purificación , Hidróxido de Magnesio/química , Espectrometría de Masas/métodos , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos
6.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22859204

RESUMEN

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Asunto(s)
Efecto Invernadero/historia , Temperatura , Clima Tropical , Animales , Regiones Antárticas , Atmósfera/química , Dióxido de Carbono/análisis , Respiración de la Célula , Ecosistema , Sedimentos Geológicos/química , Historia Antigua , Actividades Humanas , Lípidos/análisis , Modelos Teóricos , Fotosíntesis , Polen , Reproducibilidad de los Resultados , Estaciones del Año , Esporas/aislamiento & purificación , Árboles/crecimiento & desarrollo
7.
J Anal At Spectrom ; 31(1): 319-327, 2016 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-27284213

RESUMEN

Organic compounds released from resins that are commonly employed for trace element separations are known to have a detrimental impact on the quality of isotopic analyses by MC-ICP-MS. A recent study highlighted that such effects can be particularly problematic for Cd stable isotope measurements (M. Gault-Ringold and C. H. Stirling, J. Anal. At. Spectrom., 2012, 27, 449-459). In this case, the final stage of sample purification commonly applies extraction chromatography with Eichrom TRU resin, which employs particles coated with octylphenyl-N,N-di-isobutyl carbamoylphosphine oxide (CMPO) dissolved in tri-n-butyl phosphate (TBP). During chromatography, it appears that some of these compounds are eluted alongside Cd and cannot be removed by evaporation due to their high boiling points. When aliquots of the zero-ε reference material were processed through the purification procedure, refluxed in concentrated HNO3 and analyzed at minimum dilution (in 1 ml 0.1 M HNO3), they yielded Cd isotopic compositions (ε114/110Cd = 4.6 ± 3.4, 2SD, n = 4) that differed significantly from the expected value, despite the use of a double spike technique to correct for instrumental mass fractionation. This result was accompanied by a 35% reduction in instrumental sensitivity for Cd. With increasing dilution of the organic resin residue, both of these effects are reduced and they are insignificant when the eluted Cd is dissolved in ≥3 ml 0.1 M HNO3. Our results, furthermore, indicate that the isotopic artefacts are most likely related to anomalous mass bias behavior. Previous studies have shown that perchloric acid can be effective at avoiding such effects (Gault-Ringold and Stirling, 2012; K. C. Crocket, M. Lambelet, T. van de Flierdt, M. Rehkämper and L. F. Robinson, Chem. Geol., 2014, 374-375, 128-140), presumably by oxidizing the resin-derived organics, but there are numerous disadvantages to its use. Here we show that liquid-liquid extraction with n-heptane removes the organic compounds, dramatically improving quality of the Cd isotope data for samples that are analyzed at or close to minimum dilution factors. This technique is quick, simple and may be of use prior to analysis of other isotope systems where similar resins are employed.

8.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29035258

RESUMEN

The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean-sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer-tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

9.
Mar Pollut Bull ; 189: 114798, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36907166

RESUMEN

Anthropogenic emissions have severely perturbed the marine biogeochemical cycle of lead (Pb). Here, we present new Pb concentration and isotope data for surface seawater from GEOTRACES section GA02, sampled in the western South Atlantic in 2011. The South Atlantic is divided into three hydrographic zones: equatorial (0-20°S), subtropical (20-40°S), and subantarctic (40-60°S). The equatorial zone is dominated by previously deposited Pb transported by surface currents. The subtropical zone largely reflects anthropogenic Pb emissions from South America, whilst the subantarctic zone presents a mixture of South American anthropogenic Pb and natural Pb from Patagonian dust. The mean Pb concentration of 16.7 ± 3.8 pmol/kg is 34 % lower than in the 1990s, mostly driven by changes in the subtropical zone, with the fraction of natural Pb increasing from 24 % to 36 % between 1996 and 2011. Although anthropogenic Pb remains predominant, these findings demonstrate the effectiveness of policies that banned leaded gasoline.


Asunto(s)
Plomo , Agua de Mar , Océano Atlántico , Polvo , Isótopos/análisis , Monitoreo del Ambiente
10.
Nat Commun ; 14(1): 2129, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072396

RESUMEN

The Last Interglacial (LIG: 130,000-115,000 years ago) was a period of warmer global mean temperatures and higher and more variable sea levels than the Holocene (11,700-0 years ago). Therefore, a better understanding of Antarctic ice-sheet dynamics during this interval would provide valuable insights for projecting sea-level change in future warming scenarios. Here we present a high-resolution record constraining ice-sheet changes in the Wilkes Subglacial Basin (WSB) of East Antarctica during the LIG, based on analysis of sediment provenance and an ice melt proxy in a marine sediment core retrieved from the Wilkes Land margin. Our sedimentary records, together with existing ice-core records, reveal dynamic fluctuations of the ice sheet in the WSB, with thinning, melting, and potentially retreat leading to ice loss during both early and late stages of the LIG. We suggest that such changes along the East Antarctic Ice Sheet margin may have contributed to fluctuating global sea levels during the LIG.

11.
Nat Commun ; 13(1): 3763, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773248

RESUMEN

The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (εNd) of cold-water coral skeletons from intermediate depths (1460‒1689 m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic εNd values of ~-4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean εNd of ~-7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.


Asunto(s)
Antozoos , Cubierta de Hielo , Animales , Océanos y Mares , Agua de Mar , Agua , Movimientos del Agua
12.
Nat Commun ; 9(1): 317, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358604

RESUMEN

Observations and model experiments highlight the importance of ocean heat in forcing ice sheet retreat during the present and geological past, but past ocean temperature data are virtually missing in ice sheet proximal locations. Here we document paleoceanographic conditions and the (in)stability of the Wilkes Land subglacial basin (East Antarctica) during the mid-Miocene (~17-13.4 million years ago) by studying sediment cores from offshore Adélie Coast. Inland retreat of the ice sheet, temperate vegetation, and warm oligotrophic waters characterise the mid-Miocene Climatic Optimum (MCO; 17-14.8 Ma). After the MCO, expansion of a marine-based ice sheet occurs, but remains sensitive to melting upon episodic warm water incursions. Our results suggest that the mid-Miocene latitudinal temperature gradient across the Southern Ocean never resembled that of the present day. We demonstrate that a strong coupling of oceanic climate and Antarctic continental conditions existed and that the East Antarctic subglacial basins were highly sensitive to ocean warming.

13.
Nat Commun ; 8: 14595, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28239149

RESUMEN

Large amplitude variations in atmospheric CO2 were associated with glacial terminations of the Late Pleistocene. Here we provide multiple lines of evidence suggesting that the ∼20 p.p.m.v. overshoot in CO2 at the end of Termination 2 (T2) ∼129 ka was associated with an abrupt (≤400 year) deepening of Atlantic Meridional Overturning Circulation (AMOC). In contrast to Termination 1 (T1), which was interrupted by the Bølling-Allerød (B-A), AMOC recovery did not occur until the very end of T2, and was characterized by pronounced formation of deep waters in the NW Atlantic. Considering the variable influences of ocean circulation change on atmospheric CO2, we suggest that the net change in CO2 across the last 2 terminations was approximately equal if the transient effects of deglacial oscillations in ocean circulation are taken into account.

14.
Nat Commun ; 7: 12921, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27678297

RESUMEN

Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

15.
Science ; 340(6130): 341-4, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23599491

RESUMEN

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Asunto(s)
Adaptación Fisiológica , Dinoflagelados/fisiología , Ecosistema , Cubierta de Hielo , Océanos y Mares , Fitoplancton/fisiología , Zooplancton/fisiología , Animales , Regiones Antárticas , Frío , Fósiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA