Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Blood ; 140(19): 2037-2052, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35984907

RESUMEN

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.


Asunto(s)
Leucemia Mieloide Aguda , Metionina , Ratones , Animales , Leucemia Mieloide Aguda/patología , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/uso terapéutico , Histonas/metabolismo , Racemetionina
2.
Blood ; 121(13): 2452-61, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23349393

RESUMEN

The Polycomb group (PcG) protein BMI1 is a key factor in regulating hematopoietic stem cell (HSC) and leukemic stem cell self-renewal and functions in the context of the Polycomb repressive complex 1 (PRC1). In humans, each of the 5 subunits of PRC1 has paralog family members of which many reside in PRC1 complexes, likely in a mutually exclusive manner, pointing toward a previously unanticipated complexity of Polycomb-mediated silencing. We used an RNA interference screening approach to test the functionality of these paralogs in human hematopoiesis. Our data demonstrate a lack of redundancy between various paralog family members, suggestive of functional diversification between PcG proteins. By using an in vivo biotinylation tagging approach followed by liquid chromatography-tandem mass spectrometry to identify PcG interaction partners, we confirmed the existence of multiple specific PRC1 complexes. We find that CBX2 is a nonredundant CBX paralog vital for HSC and progenitor function that directly regulates the expression of the cyclin-dependent kinase inhibitor p21, independently of BMI1 that dominantly controls expression of the INK4A/ARF locus. Taken together, our data show that different PRC1 paralog family members have nonredundant and locus-specific gene regulatory activities that are essential for human hematopoiesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Silenciador del Gen , Sitios Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Femenino , Sangre Fetal/citología , Sangre Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen/fisiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Humanos , Recién Nacido , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Embarazo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Homología de Secuencia , Especificidad por Sustrato/genética
3.
Blood ; 129(1): 4-5, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28057669
4.
Blood ; 119(13): 3050-9, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22327222

RESUMEN

Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecules can serve as tools to manipulate cell fate decisions. Here, we tested 2 small molecules, valproic acid (VPA) and lithium (Li), to inhibit differentiation. HSPCs exposed to VPA and Li during differentiation-inducing culture preserved an immature cell phenotype, provided radioprotection to lethally irradiated recipients, and enhanced in vivo repopulating potential. Anti-differentiation effects of VPA and Li were observed also at the level of committed progenitors, where VPA re-activated replating activity of common myeloid progenitor and granulocyte macrophage progenitor cells. Furthermore, VPA and Li synergistically preserved expression of stem cell-related genes and repressed genes involved in differentiation. Target genes were collectively co-regulated during normal hematopoietic differentiation. In addition, transcription factor networks were identified as possible primary regulators. Our results show that the combination of VPA and Li potently delays differentiation at the biologic and molecular levels and provide evidence to suggest that combinatorial screening of chemical compounds may uncover possible additive/synergistic effects to modulate stem cell fate decisions.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Litio/farmacología , Ácido Valproico/farmacología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Femenino , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Litio/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Células Mieloides/fisiología , Fenotipo , Factores de Tiempo , Ácido Valproico/administración & dosificación
5.
Blood ; 116(22): 4621-30, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20724541

RESUMEN

The major limitation for the development of curative cancer therapies has been an incomplete understanding of the molecular mechanisms driving cancer progression. Human models to study the development and progression of chronic myeloid leukemia (CML) have not been established. Here, we show that BMI1 collaborates with BCR-ABL in inducing a fatal leukemia in nonobese diabetic/severe combined immunodeficiency mice transplanted with transduced human CD34(+) cells within 4-5 months. The leukemias were transplantable into secondary recipients with a shortened latency of 8-12 weeks. Clonal analysis revealed that similar clones initiated leukemia in primary and secondary mice. In vivo, transformation was biased toward a lymphoid blast crisis, and in vitro, myeloid as well as lymphoid long-term, self-renewing cultures could be established. Retroviral introduction of BMI1 in primary chronic-phase CD34(+) cells from CML patients elevated their proliferative capacity and self-renewal properties. Thus, our data identify BMI1 as a potential therapeutic target in CML.


Asunto(s)
Antígenos CD34/metabolismo , Transformación Celular Neoplásica/metabolismo , Sangre Fetal/citología , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Proteínas de Fusión bcr-abl/genética , Expresión Génica , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/etiología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones SCID , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Células Tumorales Cultivadas
6.
J Cell Biol ; 178(6): 913-24, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17785516

RESUMEN

Embryonic stem (ES) cells are able to grow indefinitely (self-renewal) and have the potential to differentiate into all adult cell types (pluripotency). The regulatory network that controls pluripotency is well characterized, whereas the molecular basis for the transition from self-renewal to the differentiation of ES cells is much less understood, although dynamic epigenetic gene silencing and chromatin compaction are clearly implicated. In this study, we report that UTF1 (undifferentiated embryonic cell transcription factor 1) is involved in ES cell differentiation. Knockdown of UTF1 in ES and carcinoma cells resulted in a substantial delay or block in differentiation. Further analysis using fluorescence recovery after photobleaching assays, subnuclear fractionations, and reporter assays revealed that UTF1 is a stably chromatin-associated transcriptional repressor protein with a dynamic behavior similar to core histones. An N-terminal Myb/SANT domain and a C-terminal domain containing a putative leucine zipper are required for these properties of UTF1. These data demonstrate that UTF1 is a strongly chromatin-associated protein involved in the initiation of ES cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular Tumoral , Células Madre Embrionarias/citología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Mutación , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Transactivadores/genética
7.
Stem Cells ; 28(10): 1703-14, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20715181

RESUMEN

Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response to dimethyl sulfoxide (DMSO) or after LIF withdrawal and display increased colony formation. UTF1 KD ES cells display extensive chromatin decondensation, reflected by a dramatic increase in nucleosome release on micrococcal nuclease (MNase) treatment and enhanced MNase sensitivity of UTF1 target genes in UTF1 KD ES cells. Summarizing, our data show that UTF1 is a key chromatin component in ES cells, preventing ES cell chromatin decondensation, and aberrant gene expression; both essential for proper initiation of lineage-specific differentiation of ES cells.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/genética , Transactivadores/metabolismo , Animales , Southern Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Línea Celular Tumoral , Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Ratones , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Transactivadores/genética
8.
iScience ; 24(5): 102435, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34113809

RESUMEN

In an attempt to unravel functionality of the non-canonical PRC1.1 Polycomb complex in human leukemogenesis, we show that USP7 and TRIM27 are integral components of PRC1.1. USP7 interactome analyses show that PRC1.1 is the predominant Polycomb complex co-precipitating with USP7. USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding, coinciding with reduced H2AK119ub and H3K27ac levels and diminished gene transcription of active PRC1.1-controlled loci, whereas H2AK119ub marks are also lost at PRC1 loci. TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1, and TRIM27 knockdown partially rescues USP7 inhibitor sensitivity. USP7 inhibitors effectively impair proliferation in AML cells in vitro, also independent of the USP7-MDM2-TP53 axis, and MLL-AF9-induced leukemia is delayed in vivo in human leukemia xenografts. We propose a model where USP7 counteracts TRIM27 E3 ligase activity, thereby maintaining PRC1.1 integrity and function. Moreover, USP7 inhibition may be a promising new strategy to treat AML patients.

9.
J Cell Biol ; 166(1): 27-36, 2004 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-15226310

RESUMEN

The Cockayne syndrome B (CSB) protein is essential for transcription-coupled DNA repair (TCR), which is dependent on RNA polymerase II elongation. TCR is required to quickly remove the cytotoxic transcription-blocking DNA lesions. Functional GFP-tagged CSB, expressed at physiological levels, was homogeneously dispersed throughout the nucleoplasm in addition to bright nuclear foci and nucleolar accumulation. Photobleaching studies showed that GFP-CSB, as part of a high molecular weight complex, transiently interacts with the transcription machinery. Upon (DNA damage-induced) transcription arrest CSB binding these interactions are prolonged, most likely reflecting actual engagement of CSB in TCR. These findings are consistent with a model in which CSB monitors progression of transcription by regularly probing elongation complexes and becomes more tightly associated to these complexes when TCR is active.


Asunto(s)
Daño del ADN , ADN Helicasas/química , Transcripción Genética , Transporte Activo de Núcleo Celular , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Síndrome de Cockayne/metabolismo , Simulación por Computador , ADN Helicasas/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN , ADN Complementario/metabolismo , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes , Humanos , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Cinética , Luz , Proteínas Luminiscentes/metabolismo , Microscopía , Microscopía Fluorescente , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , ARN Polimerasa II/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Programas Informáticos , Factores de Tiempo , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A
10.
Elife ; 82019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31199242

RESUMEN

Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus. In parallel, binding of PRC1/2 to target genes is strongly reduced, coinciding with a dramatic loss of H2AK119ub and H3K27me3 marks. Nucleolar-accumulated CBX proteins are immobile, but remarkably both CBX protein accumulation and loss of PRC1/2 epigenetic marks are reversible. This post-heat shock recovery of pan-nuclear CBX protein localization and reinstallation of epigenetic marks is HSP70 dependent. Our findings demonstrate that the nucleolus is an essential protein quality control center, which is indispensable for recovery of epigenetic regulators and maintenance of the epigenome after heat shock.


Asunto(s)
Nucléolo Celular/metabolismo , Epigénesis Genética/efectos de la radiación , Respuesta al Choque Térmico , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Línea Celular , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos
11.
Cell Rep ; 14(2): 332-46, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26748712

RESUMEN

Polycomb proteins are classical regulators of stem cell self-renewal and cell lineage commitment and are frequently deregulated in cancer. Here, we find that the non-canonical PRC1.1 complex, as identified by mass-spectrometry-based proteomics, is critically important for human leukemic stem cells. Downmodulation of PRC1.1 complex members, like the DNA-binding subunit KDM2B, strongly reduces cell proliferation in vitro and delays or even abrogates leukemogenesis in vivo in humanized xenograft models. PRC1.1 components are significantly overexpressed in primary AML CD34(+) cells. Besides a set of genes that is targeted by PRC1 and PRC2, ChIP-seq studies show that PRC1.1 also binds a distinct set of genes that are devoid of H3K27me3, suggesting a gene-regulatory role independent of PRC2. This set encompasses genes involved in metabolism, which have transcriptionally active chromatin profiles. These data indicate that PRC1.1 controls specific genes involved in unique cell biological processes required for leukemic cell viability.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos
12.
Mol Biol Cell ; 26(18): 3301-12, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26179916

RESUMEN

Endoplasmic reticulum-synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2ß are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Ratones , Poro Nuclear/metabolismo , Estructura Terciaria de Proteína
13.
PLoS One ; 10(5): e0128585, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26016997

RESUMEN

Leukemic stem cells (LSCs) reside within bone marrow niches that maintain their relatively quiescent state and convey resistance to conventional treatment. Many of the microenvironmental signals converge on RAC GTPases. Although it has become clear that RAC proteins fulfill important roles in the hematopoietic compartment, little has been revealed about the downstream effectors and molecular mechanisms. We observed that in BCR-ABL-transduced human hematopoietic stem/progenitor cells (HSPCs) depletion of RAC2 but not RAC1 induced a marked and immediate decrease in proliferation, progenitor frequency, cobblestone formation and replating capacity, indicative for reduced self-renewal. Cell cycle analyses showed reduced cell cycle activity in RAC2-depleted BCR-ABL leukemic cobblestones coinciding with an increased apoptosis. Moreover, a decrease in mitochondrial membrane potential was observed upon RAC2 downregulation, paralleled by severe mitochondrial ultrastructural malformations as determined by automated electron microscopy. Proteome analysis revealed that RAC2 specifically interacted with a set of mitochondrial proteins including mitochondrial transport proteins SAM50 and Metaxin 1, and interactions were confirmed in independent co-immunoprecipitation studies. Downregulation of SAM50 also impaired the proliferation and replating capacity of BCR-ABL-expressing cells, again associated with a decreased mitochondrial membrane potential. Taken together, these data suggest an important role for RAC2 in maintaining mitochondrial integrity.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Células Madre/metabolismo , Proteínas de Unión al GTP rac/genética , Apoptosis/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Ciclo Celular/genética , Línea Celular , Proliferación Celular/genética , Regulación hacia Abajo/genética , Proteínas de Fusión bcr-abl/genética , Células HEK293 , Células Madre Hematopoyéticas/patología , Humanos , Inmunoprecipitación/métodos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas/genética , Células Madre/patología , Proteína RCA2 de Unión a GTP
14.
J Stem Cells ; 7(3): 155-79, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23619382

RESUMEN

Acute myeloid leukemia has emerged as a paradigm for the concept of the cancer stem cell. This hypothesis presumes that the disease is maintained by a rare population of leukemia-initiating stem cells which have acquired genetic or epigenetic changes. It is most likely that a single (epi)genetic event will not be sufficient to cause leukemia, but that a number of sequential events are required. Similar to normal hematopoietic stem cells, both intrinsic as well as extrinsic factors that arise from the bone marrow niche, provide essential cues that regulate cell fate decisions such as leukemic stem cell self-renewal and differentiation. In this chapter, we will review the current understanding of genetic and epigenetic abnormalities that underlie the process of leukemic transformation, and will discuss which events potentially co-operate to induce leukemia.


Asunto(s)
Transformación Celular Neoplásica , Epigenómica , Leucemia/genética , Células Madre Neoplásicas/patología , Animales , Humanos , Leucemia/patología
15.
Bioessays ; 24(9): 780-4, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12210513

RESUMEN

The severe hereditary progeroid disorder Cockayne syndrome is a consequence of a defective transcription-coupled repair (TCR) pathway. This special mode of DNA repair aids a RNA polymerase that is stalled by a DNA lesion in the template and ensures efficient DNA repair to permit resumption of transcription and prevent cell death. Although some key players in TCR, such as the Cockayne syndrome A (CSA) and B (CSB) proteins have been identified, the exact molecular mechanism still remains illusive. A recent report provides new unexpected insights into TCR in yeast. The identification and characterisation of a novel protein co-purifying with the yeast homologue of CSB (Rad26) imposes reassessment of our current understanding of TCR in yeast. What about humans?


Asunto(s)
Proteínas de Ciclo Celular , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Proteínas de Schizosaccharomyces pombe , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Proteínas Fúngicas/metabolismo , Humanos , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA