Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Environ Manage ; 352: 119936, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38218164

RESUMEN

Biodiversity loss and climate change have severely impacted ecosystems and livelihoods worldwide, compromising access to food and water, increasing disaster risk, and affecting human health globally. Nature-based Solutions (NbS) have gained interest in addressing these global societal challenges. Although much effort has been directed to NbS in urban and terrestrial environments, the implementation of NbS in marine and coastal environments (blue NbS) lags. The lack of a framework to guide decision-makers and practitioners through the initial planning stages appears to be one of the main obstacles to the slow implementation of blue NbS. To address this, we propose an integrated conceptual framework, built from expert knowledge, to inform the selection of the most appropriate blue NbS based on desired intervention objectives and social-ecological context. Our conceptual framework follows a four incremental steps structure: Step 1 aims to identify the societal challenge(s) to address; Step 2 highlights ecosystem services and the underlying biodiversity and ecological functions that could contribute to confronting the societal challenge(s); Step 3 identify the specific environmental context the intervention needs to be set within (e.g. the spatial scale the intervention will operate within, the ecosystem's vulnerability to stressors, and its ecological condition); and Step 4 provides a selection of potential blue NbS interventions that would help address the targeted societal challenge(s) considering the context defined through Step 3. Designed to maintain, enhance, recover, rehabilitate, or create ecosystem services by supporting biodiversity, the blue NbS intervention portfolio includes marine protection (i.e., fully, highly, lightly, and minimally protected areas), restorative activities (i.e., active, passive, and partial restoration; rehabilitation of ecological function and ecosystem creation), and other management measures (i.e., implementation and enforcement of regulation). Ultimately, our conceptual framework guides decision-makers toward a versatile portfolio of interventions that cater to the specific needs of each ecosystem rather than imposing a rigid, one-size-fits-all model. In the future, this framework needs to integrate socio-economic considerations more comprehensively and be kept up-to-date by including the latest scientific information.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Cambio Climático
2.
Proc Biol Sci ; 283(1826): 20152326, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26962135

RESUMEN

The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity.


Asunto(s)
Organismos Acuáticos/fisiología , Cadena Alimentaria , Humedales , Biodiversidad , Mauritania , New England , Simbiosis
3.
J Anim Ecol ; 84(2): 554-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25283546

RESUMEN

Models relating intake rate to food abundance and competitor density (generalized functional response models) can predict forager distributions and movements between patches, but we lack understanding of how distributions and small-scale movements by the foragers themselves affect intake rates. Using a state-of-the-art approach based on continuous-time Markov chain dynamics, we add realism to classic functional response models by acknowledging that the chances to encounter food and competitors are influenced by movement decisions, and, vice versa, that movement decisions are influenced by these encounters. We used a multi-state modelling framework to construct a stochastic functional response model in which foragers alternate between three behavioural states: searching, handling and moving. Using behavioural observations on a molluscivore migrant shorebird (red knot, Calidris canutus canutus), at its main wintering area (Banc d'Arguin, Mauritania), we estimated transition rates between foraging states as a function of conspecific densities and densities of the two main bivalve prey. Intake rate decreased with conspecific density. This interference effect was not due to decreased searching efficiency, but resulted from time lost to avoidance movements. Red knots showed a strong functional response to one prey (Dosinia isocardia), but a weak response to the other prey (Loripes lucinalis). This corroborates predictions from a recently developed optimal diet model that accounts for the mildly toxic effects due to consuming Loripes. Using model averaging across the most plausible multi-state models, the fully parameterized functional response model was then used to predict intake rate for an independent data set on habitat choice by red knot. Comparison of the sites selected by red knots with random sampling sites showed that the birds fed at sites with higher than average Loripes and Dosinia densities, that is sites for which we predicted higher than average intake rates. We discuss the limitations of Holling's classic functional response model which ignores movement and the limitations of contemporary movement ecological theory that ignores consumer-resource interactions. With the rapid advancement of technologies to track movements of individual foragers at fine spatial scales, the time is ripe to integrate descriptive tracking studies with stochastic movement-based functional response models.


Asunto(s)
Charadriiformes/fisiología , Animales , Conducta Apetitiva , Bivalvos , Ecosistema , Conducta Alimentaria , Locomoción , Mauritania , Modelos Estadísticos , Conducta Predatoria
4.
Proc Biol Sci ; 280(1763): 20130861, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23740782

RESUMEN

Recent insights suggest that predators should include (mildly) toxic prey when non-toxic food is scarce. However, the assumption that toxic prey is energetically as profitable as non-toxic prey misses the possibility that non-toxic prey have other ways to avoid being eaten, such as the formation of an indigestible armature. In that case, predators face a trade-off between avoiding toxins and minimizing indigestible ballast intake. Here, we report on the trophic interactions between a shorebird (red knot, Calidris canutus canutus) and its two main bivalve prey, one being mildly toxic but easily digestible, and the other being non-toxic but harder to digest. A novel toxin-based optimal diet model is developed and tested against an existing one that ignores toxin constraints on the basis of data on prey abundance, diet choice, local survival and numbers of red knots at Banc d'Arguin (Mauritania) over 8 years. Observed diet and annual survival rates closely fit the predictions of the toxin-based model, with survival and population size being highest in years when the non-toxic prey is abundant. In the 6 of 8 years when the non-toxic prey is not abundant enough to satisfy the energy requirements, red knots must rely on the toxic alternative.


Asunto(s)
Bivalvos/fisiología , Charadriiformes/fisiología , Conducta de Elección/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Dinámica Poblacional , Conducta Predatoria/efectos de los fármacos , Animales , Bivalvos/clasificación , Mauritania , Modelos Biológicos , Densidad de Población , Tasa de Supervivencia , Toxinas Biológicas/farmacología
5.
Ecology ; 93(5): 1143-52, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22764500

RESUMEN

Effects of predation may cascade down the food web. By alleviating interspecific competition among prey, predators may promote biodiversity, but the precise mechanisms of how predators alter competition have remained elusive. Here we report on a predator-exclosure experiment carried out in a tropical intertidal ecosystem, providing evidence for a three-level trophic cascade induced by predation by molluscivore Red Knots (Calidris canutus) that affects pore water biogeochemistry. In the exclosures the knots' favorite prey (Dosinia isocardia) became dominant and reduced the individual growth rate in an alternative prey (Loripes lucinalis). Dosinia, a suspension feeder, consumes suspended particulate organic matter (POM), whereas Loripes is a facultative mixotroph, partly living on metabolites produced by sulfur-oxidizing chemoautotrophic bacteria, but also consuming suspended POM. Reduced sulfide concentrations in the exclosures suggest that, without predation on Dosinia, stronger competition for suspended POM forces Loripes to rely on energy produced by endosymbiotic bacteria, thus leading to an enhanced uptake of sulfide from the surrounding pore water. As sulfide is toxic to most organisms, this competition-induced diet shift by Loripes may detoxify the environment, which in turn may facilitate other species. The inference that predators affect the toxicity of their environment via a multi-level trophic cascade is novel, but we believe it may be a general phenomenon in detritus-based ecosystems.


Asunto(s)
Aves/fisiología , Cadena Alimentaria , Moluscos/fisiología , Conducta Predatoria/fisiología , Agua/química , Adaptación Fisiológica , Animales , Heces/química , Modelos Biológicos , Sulfuros
6.
Nat Microbiol ; 3(8): 961, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29950696

RESUMEN

In this Article, the completeness and number of contigs for draft genomes from two individuals of Laxus oneistus are incorrect in the main text, although the correct information is included in Table 1. The original and corrected versions of the relevant sentence are shown in the correction notice.

7.
Nat Microbiol ; 2: 16195, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775707

RESUMEN

Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.


Asunto(s)
Organismos Acuáticos/microbiología , Bacterias/enzimología , Bivalvos/microbiología , Chromadorea/microbiología , Fijación del Nitrógeno , Simbiosis , Animales , Bacterias/genética , Perfilación de la Expresión Génica , Nitrogenasa/genética , Proteoma/análisis , Análisis de Secuencia de ADN
8.
Curr Biol ; 26(8): 1051-6, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26972316

RESUMEN

In many marine ecosystems, biodiversity critically depends on foundation species such as corals and seagrasses that engage in mutualistic interactions [1-3]. Concerns grow that environmental disruption of marine mutualisms exacerbates ecosystem degradation, with breakdown of the obligate coral mutualism ("coral bleaching") being an iconic example [2, 4, 5]. However, as these mutualisms are mostly facultative rather than obligate, it remains unclear whether mutualism breakdown is a common risk in marine ecosystems, and thus a potential accelerator of ecosystem degradation. Here, we provide evidence that drought triggered landscape-scale seagrass degradation and show the consequent failure of a facultative mutualistic feedback between seagrass and sulfide-consuming lucinid bivalves that in turn appeared to exacerbate the observed collapse. Local climate and remote sensing analyses revealed seagrass collapse after a summer with intense low-tide drought stress. Potential analysis-a novel approach to detect feedback-mediated state shifts-revealed two attractors (healthy and degraded states) during the collapse, suggesting that the drought disrupted internal feedbacks to cause abrupt, patch-wise degradation. Field measurements comparing degraded patches that were healthy before the collapse with patches that remained healthy demonstrated that bivalves declined dramatically in degrading patches with associated high sediment sulfide concentrations, confirming the breakdown of the mutualistic seagrass-lucinid feedback. Our findings indicate that drought triggered mutualism breakdown, resulting in toxic sulfide concentrations that aggravated seagrass degradation. We conclude that external disturbances can cause sudden breakdown of facultative marine mutualistic feedbacks. As this may amplify ecosystem degradation, we suggest including mutualisms in marine conservation and restoration approaches.


Asunto(s)
Alismatales/fisiología , Bivalvos/fisiología , Sequías , Simbiosis , Animales , Cambio Climático , Ecosistema
9.
Science ; 336(6087): 1432-4, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22700927

RESUMEN

Seagrasses evolved from terrestrial plants into marine foundation species around 100 million years ago. Their ecological success, however, remains a mystery because natural organic matter accumulation within the beds should result in toxic sediment sulfide levels. Using a meta-analysis, a field study, and a laboratory experiment, we reveal how an ancient three-stage symbiosis between seagrass, lucinid bivalves, and their sulfide-oxidizing gill bacteria reduces sulfide stress for seagrasses. We found that the bivalve-sulfide-oxidizer symbiosis reduced sulfide levels and enhanced seagrass production as measured in biomass. In turn, the bivalves and their endosymbionts profit from organic matter accumulation and radial oxygen release from the seagrass roots. These findings elucidate the long-term success of seagrasses in warm waters and offer new prospects for seagrass ecosystem conservation.


Asunto(s)
Bacterias/metabolismo , Bivalvos/fisiología , Ecosistema , Magnoliopsida/fisiología , Agua de Mar , Simbiosis , Zosteraceae/fisiología , Animales , Bacterias/crecimiento & desarrollo , Biomasa , Bivalvos/metabolismo , Bivalvos/microbiología , Crecimiento Quimioautotrófico , Sedimentos Geológicos/química , Branquias/microbiología , Magnoliopsida/crecimiento & desarrollo , Oxidación-Reducción , Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Agua de Mar/química , Sulfuros/análisis , Sulfuros/metabolismo , Zosteraceae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA