Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892400

RESUMEN

Circulating low-density lipoprotein (LDL) levels are a major risk factor for cardiovascular diseases (CVD), and even though current treatment strategies focusing on lowering lipid levels are effective, CVD remains the primary cause of death worldwide. Atherosclerosis is the major cause of CVD and is a chronic inflammatory condition in which various cell types and protein kinases play a crucial role. However, the underlying mechanisms of atherosclerosis are not entirely understood yet. Notably, protein kinases are highly druggable targets and represent, therefore, a novel way to target atherosclerosis. In this review, the potential role of the calcium/calmodulin-dependent protein kinase-like (CaMKL) family and its role in atherosclerosis will be discussed. This family consists of 12 subfamilies, among which are the well-described and conserved liver kinase B1 (LKB1) and 5' adenosine monophosphate-activated protein kinase (AMPK) subfamilies. Interestingly, LKB1 plays a key role and is considered a master kinase within the CaMKL family. It has been shown that LKB1 signaling leads to atheroprotective effects, while, for example, members of the microtubule affinity-regulating kinase (MARK) subfamily have been described to aggravate atherosclerosis development. These observations highlight the importance of studying kinases and their signaling pathways in atherosclerosis, bringing us a step closer to unraveling the underlying mechanisms of atherosclerosis.


Asunto(s)
Aterosclerosis , Transducción de Señal , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/enzimología , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Activadas por AMP/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542181

RESUMEN

Periodontal defects' localization affects wound healing and bone remodeling, with faster healing in the upper jaw compared to the lower jaw. While differences in blood supply, innervation, and odontogenesis contribute, cell-intrinsic variances may exist. Few studies explored cell signaling in periodontal ligament stem cells (PDLSC), overlooking mandible-maxilla disparitiesUsing kinomics technology, we investigated molecular variances in PDLSC. Characterization involved stem cell surface markers, proliferation, and differentiation capacities. Kinase activity was analyzed via multiplex kinase profiling, mapping differential activity in known gene regulatory networks. Upstream kinase analysis identified stronger EphA receptor expression in the mandible, potentially inhibiting osteogenic differentiation. The PI3K-Akt pathway showed higher activity in lower-jaw PDLSC. PDLSC from the upper jaw exhibit superior proliferation and differentiation capabilities. Differential activation of gene regulatory pathways in upper vs. lower-jaw PDLSC suggests implications for regenerative therapies.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Osteogénesis/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre/metabolismo , Diferenciación Celular/fisiología , Mandíbula , Células Cultivadas , Proliferación Celular
3.
Eur J Clin Invest ; 53(1): e13885, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36219492

RESUMEN

Atherosclerosis, a lipid-driven inflammatory disease, is the main underlying cause of cardiovascular diseases (CVDs) both in men and women. Sex-related dimorphisms regarding CVDs and atherosclerosis were observed since more than a decade ago. Inflammatory mediators such as cytokines, but also endothelial dysfunction, vascular smooth muscle cell migration and proliferation lead to vascular remodelling but are differentially affected by sex. Each year a greater number of men die of CVDs compared with women and are also affected by CVDs at an earlier age (40-70 years old) while women develop atherosclerosis-related complications mainly after menopause (60+ years). The exact biological reasons behind this discrepancy are still not well-understood. From the numerous animal studies on atherosclerosis, only a few include both sexes and even less investigate and highlight the sex-specific differences that may arise. Endogenous sex hormones such as testosterone and oestrogen modulate the atherosclerotic plaque composition and the frequency of such plaques. In men, testosterone seems to act like a double-edged sword as its decrease with ageing correlates with an increased risk of atherosclerotic CVDs, while testosterone is also reported to promote inflammatory immune cell recruitment into the atherosclerotic plaque. In premenopausal women, oestrogen exerts anti-atherosclerotic effects, which decline together with its level after menopause resulting in increased CVD risk in ageing women. However, the interplay of sex hormones, sex-specific immune responses and other sex-related factors is still incompletely understood. This review highlights reported sex differences in atherosclerotic vascular remodelling and the role of endogenous sex hormones in this process.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Animales , Femenino , Masculino , Remodelación Vascular , Testosterona , Hormonas Esteroides Gonadales , Estrógenos
4.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34597388

RESUMEN

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Asunto(s)
Aterosclerosis , Propionatos , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/etiología , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Humanos , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Propionatos/farmacología , Propionatos/uso terapéutico
5.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675065

RESUMEN

Serotonin, also known as 5-hydroxytryptamine (5-HT) is a well-known neurotransmitter in the central nervous system (CNS), but also plays a significant role in peripheral tissues. There is a growing body of evidence suggesting that serotonin influences immune cell responses and contributes to the development of pathological injury in cardiovascular diseases, such as atherosclerosis, as well as other diseases which occur as a result of immune hyperactivity. In particular, high levels of serotonin are able to activate a multitude of 5-HT receptors found on the surface of immune cells, thereby influencing the process of atherosclerotic plaque formation in arteries. In this review, we will discuss the differences between serotonin production in the CNS and the periphery, and will give a brief outline of the function of serotonin in the periphery. In this context, we will particularly focus on the effects of serotonin on immune cells related to atherosclerosis and identify caveats that are important for future research.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Sistema Cardiovascular/metabolismo
6.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175466

RESUMEN

Cardiovascular diseases (CVDs), such as ischemic heart disease and stroke, are recognized as major causes of deaths worldwide [...].


Asunto(s)
Enfermedades Cardiovasculares , Isquemia Miocárdica , Accidente Cerebrovascular , Humanos , Receptores Acoplados a Proteínas G
7.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108478

RESUMEN

Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/complicaciones , Proteína ADAM17/metabolismo , Riñón/metabolismo , Proteína ADAM10/metabolismo , Inflamación , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
8.
Kidney Int ; 101(2): 256-273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774555

RESUMEN

Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Animales , Cardiomiopatías/genética , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/complicaciones
9.
Basic Res Cardiol ; 117(1): 30, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35674847

RESUMEN

Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Receptores CXCR , Animales , Aterosclerosis/metabolismo , Adhesión Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Receptores CXCR/metabolismo , Factor de Transcripción ReIA/metabolismo
10.
Cardiovasc Diabetol ; 21(1): 18, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123462

RESUMEN

BACKGROUND: The gut incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide) are secreted by enteroendocrine cells following food intake leading to insulin secretion and glucose lowering. Beyond its metabolic function GIP has been found to exhibit direct cardio- and atheroprotective effects in mice and to be associated with cardiovascular prognosis in patients with myocardial infarction. The aim of this study was to characterize endogenous GIP levels in patients with acute myocardial infarction. METHODS AND RESULTS: Serum concentrations of GIP were assessed in 731 patients who presented with clinical indication of coronary angiography. Circulating GIP levels were significantly lower in patients with STEMI (ST-elevation myocardial infarction; n=100) compared to clinically stable patients without myocardial infarction (n=631) (216.82 pg/mL [Q1-Q3: 52.37-443.07] vs. 271.54 pg/mL [Q1-Q3: 70.12-542.41], p = 0.0266). To characterize endogenous GIP levels in patients with acute myocardial injury we enrolled 18 patients scheduled for cardiac surgery with cardiopulmonary bypass and requirement of extracorporeal circulation as a reproducible condition of myocardial injury. Blood samples were drawn directly before surgery (baseline), upon arrival at the intensive care unit (ICU), 6 h post arrival to the ICU and at the morning of the first and second postoperative days. Mean circulating GIP concentrations decreased in response to surgery from 45.3 ± 22.6 pg/mL at baseline to a minimum of 31.9 ± 19.8 pg/mL at the first postoperative day (p = 0.0384) and rose again at the second postoperative day (52.1 ± 28.0 pg/mL). CONCLUSIONS: Circulating GIP levels are downregulated in patients with myocardial infarction and following cardiac surgery. These results might suggest nutrition-independent regulation of GIP secretion following myocardial injury in humans.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Polipéptido Inhibidor Gástrico/sangre , Cardiopatías/sangre , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Biomarcadores/sangre , Puente Cardiopulmonar/efectos adversos , Estudios de Casos y Controles , Angiografía Coronaria , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Femenino , Cardiopatías/diagnóstico , Cardiopatías/etiología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen
11.
Basic Res Cardiol ; 116(1): 57, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34647168

RESUMEN

The adrenal glands participate in cardiovascular (CV) physiology and the pathophysiology of CV diseases through their effects on sodium and water metabolism, vascular tone and cardiac function. In the present study, we identified a new adrenal compound controlling mesenchymal cell differentiation that regulates osteoblastic differentiation in the context of vascular calcification. This peptide was named the "calcification blocking factor" (CBF) due to its protective effect against vascular calcification and is released from chromogranin A via enzymatic cleavage by calpain 1 and kallikrein. CBF reduced the calcium content of cells and thoracic aortic rings under calcifying culture conditions, as well as in aortas from animals treated with vitamin D and nicotine (VDN animals). Furthermore, CBF prevented vascular smooth muscle cell (VSMC) transdifferentiation into osteoblast-like cells within the vascular wall via the sodium-dependent phosphate transporter PIT-1 and by inhibition of NF-κB activation and the subsequent BMP2/p-SMAD pathway. Pulse pressure, a marker of arterial stiffness, was significantly decreased in VDN animals treated with CBF. In line with our preclinical data, CBF concentration is significantly reduced in diseases characterized by increased calcification, as shown in patients with chronic kidney disease. In preparation for clinical translation, the active site of the native 19-AS long native CBF was identified as EGQEEEED. In conclusion, we have identified the new peptide CBF, which is secreted from the adrenal glands and might prevent vascular calcification by inhibition of osteogenic transdifferentiation. The anti-calcific effects of CBF and short active site may therefore promote the development of new tools for the prevention and/or treatment of vascular calcification.


Asunto(s)
Transdiferenciación Celular , Calcificación Vascular , Animales , Células Cultivadas , Cromogranina A , Humanos , Músculo Liso Vascular , Miocitos del Músculo Liso , Calcificación Vascular/prevención & control
12.
Subcell Biochem ; 94: 399-420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189309

RESUMEN

High-density lipoprotein (HDL) and its main protein component apolipoprotein (apo)A-I, play an important role in cholesterol homeostasis. It has been demonstrated that HDLs comprise of a very heterogeneous group of particles, not only regarding size but also composition. HDL's best described function is its role in the reverse cholesterol transport, where lipid-free apoA-I or small HDLs can accept and take up cholesterol from peripheral cells and subsequently transport this to the liver for excretion. However, several other functions have also been described, like anti-oxidant, anti-inflammatory and anti-thrombotic effects. In this article, the general features, synthesis and metabolism of apoA-I and HDLs will be discussed. Additionally, an overview of HDL functions will be given, especially in the context of some major pathologies like cardiovascular disease, cancer and diabetes mellitus. Finally, the therapeutic potential of raising HDL will be discussed, focussing on the difficulties of the past and the promises of the future.


Asunto(s)
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/biosíntesis , Enfermedades Cardiovasculares/metabolismo , Colesterol/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Neoplasias/metabolismo
13.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804544

RESUMEN

The calcium Sensing Receptor (CaSR) is a cell surface receptor belonging to the family of G-protein coupled receptors. CaSR is mainly expressed by parathyroid glands, kidneys, bone, skin, adipose tissue, the gut, the nervous system, and the cardiovascular system. The receptor, as its name implies is involved in sensing calcium fluctuations in the extracellular matrix of cells, thereby having a major impact on the mineral homeostasis in humans. Besides calcium ions, the receptor is also activated by other di- and tri-valent cations, polypeptides, polyamines, antibiotics, calcilytics and calcimimetics, which upon binding induce intracellular signaling pathways. Recent studies have demonstrated that CaSR influences a wide variety of cells and processes that are involved in inflammation, the cardiovascular system, such as vascular calcification, atherosclerosis, myocardial infarction, hypertension, and obesity. Therefore, in this review, the current understanding of the role that CaSR plays in inflammation and its consequences on the cardiovascular system will be highlighted.


Asunto(s)
Calcio/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Inflamación/fisiopatología , Receptores Sensibles al Calcio/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Inflamación/metabolismo , Transducción de Señal
14.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884827

RESUMEN

Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR.


Asunto(s)
Proproteína Convertasa 9/metabolismo , Receptores de Quimiocina/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/veterinaria , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Lipopolisacáridos/farmacología , Hígado/metabolismo , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/genética , Receptores de Quimiocina/genética
15.
Arterioscler Thromb Vasc Biol ; 39(4): 685-693, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30786742

RESUMEN

Objective- Expression of the chemokine-like receptor ChemR23 (chemerin receptor 23) has been specifically attributed to plasmacytoid dendritic cells (pDCs) and macrophages and ChemR23 has been suggested to mediate an inflammatory immune response in these cells. Because chemokine receptors are important in perpetuating chronic inflammation, we aimed to establish the role of ChemR23-deficiency on macrophages and pDCs in atherosclerosis. Approach and Results- ChemR23-knockout/knockin mice expressing eGFP (enhanced green fluorescent protein) were generated and after crossing with apolipoprotein E-deficient ( Apoe-/- ChemR23 e/e) animals were fed a western-type diet for 4 and 12 weeks. Apoe-/- ChemR23 e/e mice displayed reduced lesion formation and reduced leukocyte adhesion to the vessel wall after 4 weeks, as well as diminished plaque growth, a decreased number of lesional macrophages with an increased proportion of M2 cells and a less inflammatory lesion composition after 12 weeks of western-type diet feeding. Hematopoietic ChemR23-deficiency similarly reduced atherosclerosis. Additional experiments revealed that ChemR23-deficiency induces an alternatively activated macrophage phenotype, an increased cholesterol efflux and a systemic reduction in pDC frequencies. Consequently, expression of the pDC marker SiglecH in atherosclerotic plaques of Apoe-/- ChemR23 e/e mice was declined. ChemR23-knockout pDCs also exhibited a reduced migratory capacity and decreased CCR (CC-type chemokine receptor)7 expression. Finally, adoptive transfer of sorted wild-type and knockout pDCs into Apoe-/- recipient mice revealed reduced accumulation of ChemR23-deficient pDCs in atherosclerotic lesions. Conclusions- Hematopoietic ChemR23-deficiency increases the proportion of alternatively activated M2 macrophages in atherosclerotic lesions and attenuates pDC homing to lymphatic organs and recruitment to atherosclerotic lesions, which synergistically restricts atherosclerotic plaque formation and progression.


Asunto(s)
Aterosclerosis/metabolismo , Quimiocinas/fisiología , Células Dendríticas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Macrófagos/metabolismo , Animales , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Adhesión Celular , Quimiocinas/deficiencia , Quimiocinas/genética , Colesterol/metabolismo , Dieta Occidental/efectos adversos , Progresión de la Enfermedad , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genes Reporteros , Inflamación , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Fenotipo , Receptores CCR7/metabolismo
16.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906849

RESUMEN

There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.


Asunto(s)
MicroARNs/genética , Insuficiencia Renal Crónica/genética , Regulación de la Expresión Génica/genética , Humanos , Riñón/patología , MicroARNs/metabolismo , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/fisiopatología
17.
Arterioscler Thromb Vasc Biol ; 38(11): 2562-2575, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30354245

RESUMEN

Objective- Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N-acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results- First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N-acyl phosphatidylethanolamine phospholipase D expression and palmitoylethanolamide bioavailability. N-acyl phosphatidylethanolamine phospholipase D expression was progressively downregulated in the aorta of apolipoprotein E deficient (ApoE-/-) mice during atherogenesis. N-acyl phosphatidylethanolamine phospholipase D mRNA levels were also downregulated in unstable human plaques and they positively associated with smooth muscle cell markers and negatively with macrophage markers. Second, ApoE-/- mice were fed a high-fat diet for 4 or 16 weeks and treated with either vehicle or palmitoylethanolamide (3 mg/kg per day, 4 weeks) to study the effects of palmitoylethanolamide on early established and pre-established atherosclerosis. Palmitoylethanolamide treatment reduced plaque size in early atherosclerosis, whereas in pre-established atherosclerosis, palmitoylethanolamide promoted signs of plaque stability as evidenced by reduced macrophage accumulation and necrotic core size, increased collagen deposition and downregulation of M1-type macrophage markers. Mechanistically, we found that palmitoylethanolamide, by activating GPR55, increases the expression of the phagocytosis receptor MerTK (proto-oncogene tyrosine-protein kinase MER) and enhances macrophage efferocytosis, indicative of proresolving properties. Conclusions- The present study demonstrates that palmitoylethanolamide protects against atherosclerosis by promoting an anti-inflammatory and proresolving phenotype of lesional macrophages, representing a new therapeutic approach to resolve arterial inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Etanolaminas/farmacología , Macrófagos/efectos de los fármacos , Ácidos Palmíticos/farmacología , Fagocitosis/efectos de los fármacos , Placa Aterosclerótica , Amidas , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Fenotipo , Fosfolipasa D/metabolismo , Proto-Oncogenes Mas , Ratas , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Factores de Tiempo , Tirosina Quinasa c-Mer/metabolismo
18.
Circulation ; 136(1): 83-97, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28450348

RESUMEN

BACKGROUND: The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. METHODS: Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. RESULTS: Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. CONCLUSIONS: Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse cholesterol transport.


Asunto(s)
Colesterol/metabolismo , Macrófagos/metabolismo , Receptor de Melanocortina Tipo 1/metabolismo , Transducción de Señal/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Femenino , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Células HEK293 , Humanos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Receptor de Melanocortina Tipo 1/agonistas , Transducción de Señal/efectos de los fármacos , alfa-MSH/metabolismo , alfa-MSH/farmacología
19.
Circulation ; 136(4): 388-403, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28450349

RESUMEN

BACKGROUND: The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. METHODS: We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreERT2-driven)-specific or smooth muscle cell (SMC, SmmhcCreERT2- or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/ß-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. RESULTS: The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/ß-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. CONCLUSIONS: Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Células Endoteliales/metabolismo , Receptores CXCR4/biosíntesis , Animales , Aterosclerosis/genética , Permeabilidad Capilar/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR4/genética
20.
Eur Heart J ; 43(7): e32-e34, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31754688
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA