Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Traffic ; 24(10): 489-503, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37491971

RESUMEN

Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low ß-glucocerebrosidase (ß-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant ß-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based ß-GC activity assay followed by reporter trafficking assay utilizing ß-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the ß-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their ß-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.


Asunto(s)
Enfermedad de Gaucher , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Células HeLa , Lisosomas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
2.
Traffic ; 24(7): 254-269, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37198709

RESUMEN

Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of ß-glucocerebrosidase (ß-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated ß-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the ß-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Estrés del Retículo Endoplásmico , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/terapia , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Células HeLa , Lisosomas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética
3.
Bioorg Chem ; 150: 107555, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885548

RESUMEN

The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and ß-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human ß-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and ß-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.


Asunto(s)
Compuestos Azo , Inhibidores Enzimáticos , Glicósido Hidrolasas , Glicósidos , Iminoazúcares , Humanos , Compuestos Azo/química , Compuestos Azo/farmacología , Compuestos Azo/síntesis química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Glicósidos/química , Glicósidos/farmacología , Glicósidos/síntesis química , Iminoazúcares/química , Iminoazúcares/farmacología , Iminoazúcares/síntesis química , Luz , Estructura Molecular , Relación Estructura-Actividad , Glucosilceramidasa/química , Glucosilceramidasa/metabolismo , Glucosilceramidasa/farmacología
4.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599826

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Asunto(s)
Berberina , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudios de Casos y Controles , Coptis chinensis , Neuronas Dopaminérgicas/metabolismo , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Rizoma
5.
Am J Med Genet A ; 191(7): 1917-1922, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009750

RESUMEN

Gaucher disease is the most common of the lysosomal storage diseases. It presents a wide phenotypic continuum, in which one may identify the classically described phenotypes, including type 1 form with visceral involvement, type 2 acute neuropathic early-infantile form, and type 3 subacute neuronopathic form. At the most severe end there is the perinatal form with onset in utero or during the neonatal period. The very few reported cases of neonatal onset Gaucher disease presented high and early mortality, due to neurological or visceral involvement, including liver failure. We report our experience treating a patient with the neonatal form of Gaucher disease who presented at birth with thrombocytopenia, hepatosplenomegaly and cholestasis. Despite early enzyme replacement therapy, liver disease was progressive. Liver biopsy showed hepatocellular giant-cell transformation, a nonspecific finding consistent with inflammation. The lack of response to enzyme replacement therapy and the microscopic findings suggested that mechanisms apart from substrate accumulation and Gaucher cells may play a role in the hepatic pathogenesis in Gaucher disease. An attempt to use corticosteroids at the age of 3 months resulted in a dramatic improvement in liver function and resulted in long-term survival. The patient is alive and 2 years old at this writing. Our case suggests that inflammatory processes may be important in the early pathogenesis of Gaucher disease and that early use of corticosteroids may open the way to a new therapeutic approach.


Asunto(s)
Enfermedad de Gaucher , Embarazo , Femenino , Humanos , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/diagnóstico , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/genética , Estudios de Seguimiento , Hepatomegalia
6.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430645

RESUMEN

ß-glucocerebrosidase (GBA)-associated mutations are a significant risk factor for Parkinson's disease (PD) that aggravate the disease pathology by upregulating the deposition of α-Synuclein (α-Syn). The resultant clinical profile varies for PD patients without GBA mutations. The current study aimed to identify the proteomic targets involved in the pathogenic pathways leading to the differential clinical presentation of GBA-associated PD. CSF samples (n = 32) were obtained from PD patients with GBA mutations (n = 22), PD patients without GBA mutations (n = 7), and healthy controls that were carriers of GBA mutations (n = 3). All samples were subjected to in-gel tryptic digestion followed by the construction of the spectral library and quantitative SWATH-based analysis. CSF α-Syn levels were reduced in both PDIdiopathic and PDGBA cases. Our SWATH-based mass spectrometric analysis detected 363 proteins involved in immune response, stress response, and cell signaling in various groups. Intergroup analysis showed that 52 proteins were significantly up- or downregulated in various groups. Of these 52 targets, 20 proteins were significantly altered in PDGBA cases only while 2 showed different levels in PDIdiopathic patients. Our results show that the levels of several pathologically relevant proteins, including Contactin-1, Selenium-binding protein 1, Adhesion G Protein-Coupled Receptor, and Apolipoprotein E are significantly different among the sporadic and genetic variants of PD and hint at aggravated synaptic damage, oxidative stress, neuronal loss, and aggregation of α-Syn in PDGBA cases.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Espectrometría de Masas , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteoma , Proteómica , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233303

RESUMEN

Lysosomal dysfunction has been proposed as one of the most important pathogenic molecular mechanisms in Parkinson disease (PD). The most significant evidence lies in the GBA gene, which encodes for the lysosomal enzyme ß-glucocerebrosidase (ß-GCase), considered the main genetic risk factor for sporadic PD. The loss of ß-GCase activity results in the formation of α-synuclein deposits. The present study was aimed to determine the activity of the main lysosomal enzymes and the cofactors Prosaposin (PSAP) and Saposin C in PD and healthy controls, and their contribution to α-synuclein (α-Syn) aggregation. 42 PD patients and 37 age-matched healthy controls were included in the study. We first analyzed the ß-GCase, ß-galactosidase (ß-gal), ß-hexosaminidase (Hex B) and Cathepsin D (CatD) activities in white blood cells. We also measured the GBA, ß-GAL, ß-HEX, CTSD, PSAP, Saposin C and α-Syn protein levels by Western-blot. We found a 20% reduced ß-GCase and ß-gal activities in PD patients compared to controls. PSAP and Saposin C protein levels were significantly lower in PD patients and correlated with increased levels of α-synuclein. CatD, in contrast, showed significantly increased activity and protein levels in PD patients compared to controls. Increased CTSD protein levels in PD patients correlated, intriguingly, with a higher concentration of α-Syn. Our findings suggest that lysosomal dysfunction in sporadic PD is due, at least in part, to an alteration in Saposin C derived from reduced PSAP levels. That would lead to a significant decrease in the ß-GCase activity, resulting in the accumulation of α-syn. The accumulation of monohexosylceramides might act in favor of CTSD activation and, therefore, increase its enzymatic activity. The evaluation of lysosomal activity in the peripheral blood of patients is expected to be a promising approach to investigate pathological mechanisms and novel therapies aimed to restore the lysosomal function in sporadic PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Catepsina D/genética , Catepsina D/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Hexosaminidasa B/genética , Hexosaminidasa B/metabolismo , Humanos , Lisosomas/metabolismo , Mutación , Enfermedad de Parkinson/metabolismo , Saposinas/genética , Saposinas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , beta-Galactosidasa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
8.
Traffic ; 20(5): 346-356, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30895685

RESUMEN

ß-Glucocerebrosidase (GBA) is the enzyme that degrades glucosylceramide in lysosomes. Defects in GBA that result in overall loss of enzymatic activity give rise to the lysosomal storage disorder Gaucher disease, which is characterized by the accumulation of glucosylceramide in tissue macrophages. Gaucher disease is currently treated by infusion of mannose receptor-targeted recombinant GBA. The recombinant GBA is thought to reach the lysosomes of macrophages, based on the impressive clinical response that is observed in Gaucher patients (type 1) receiving this enzyme replacement therapy. In this study, we used cyclophellitol-derived activity-based probes (ABPs) with a fluorescent reporter that irreversibly bind to the catalytic pocket of GBA, to visualize the active enzymes in a correlative microscopy approach. The uptake of pre-labeled recombinant enzyme was monitored by fluorescence and electron microscopy in human fibroblasts that stably expressed the mannose receptor. The endogenous active enzyme was simultaneously visualized by in situ labeling with the ABP containing an orthogonal fluorophore. This method revealed the efficient delivery of recombinant GBA to lysosomal target compartments that contained endogenous active enzyme.


Asunto(s)
Fibroblastos/metabolismo , Glucosilceramidasa/metabolismo , Células Cultivadas , Fibroblastos/ultraestructura , Glucosilceramidasa/genética , Células HEK293 , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
9.
Chemistry ; 27(66): 16377-16388, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34570911

RESUMEN

Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in ß-glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA-targeting activity-based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism-based mode of action and uncover binding of the new N-functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6-fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA's preference for O6- and N-functionalised reagents, a bi-functional aziridine ABP was synthesized as a potentially more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.


Asunto(s)
Colorantes Fluorescentes , Glucosilceramidasa , Dominio Catalítico , Glucosilceramidasa/metabolismo
10.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576075

RESUMEN

Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme ß-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of GluCer and its metabolite glucosylsphingosine (GluSph) in a number of tissues and organs. In the immune system, GCase deficiency deregulates signal transduction events, resulting in an inflammatory environment. It is known that the complement system promotes inflammation, and complement inhibitors are currently being considered as a novel therapy for GD; however, the mechanism by which complement drives systemic macrophage-mediated inflammation remains incompletely understood. To help understand the mechanisms involved, we used human GD-induced pluripotent stem cell (iPSC)-derived macrophages. We found that GD macrophages exhibit exacerbated production of inflammatory cytokines via an innate immune response mediated by receptor 1 for complement component C5a (C5aR1). Quantitative RT-PCR and ELISA assays showed that in the presence of recombinant C5a (rC5a), GD macrophages secreted 8-10-fold higher levels of TNF-α compared to rC5a-stimulated control macrophages. PMX53, a C5aR1 blocker, reversed the enhanced GD macrophage TNF-α production, indicating that the observed effect was predominantly C5aR1-mediated. To further analyze the extent of changes induced by rC5a stimulation, we performed gene array analysis of the rC5a-treated macrophage transcriptomes. We found that rC5a-stimulated GD macrophages exhibit increased expression of genes involved in TNF-α inflammatory responses compared to rC5a-stimulated controls. Our results suggest that rC5a-induced inflammation in GD macrophages activates a unique immune response, supporting the potential use of inhibitors of the C5a-C5aR1 receptor axis to mitigate the chronic inflammatory abnormalities associated with GD.


Asunto(s)
Complemento C5a/farmacología , Enfermedad de Gaucher/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/genética , Macrófagos/metabolismo , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Oxidación-Reducción , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/metabolismo , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
11.
Cesk Patol ; 57(2): 105-108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34275320

RESUMEN

Gaucher disease is an autosomal recessive disease belonging to the so-called storage diseases. More than 300 mutations of the GBA1 gene encoding the β-glucocerebrosidase enzyme are known. It is a very rare disease in the Czech Republic. Currently 35 patients are treated. In our case report, we present the case of a 16 year old female patient attending the Clinic of Pediatric Medicine at the University Hospital in Ostrava. Since 2007, the patient has suffered prolonged thrombocytopenia, at the time with progression, and splenomegaly, which has not been further investigated. Trepanobiopsy was sent to the Department of Pathology with suspicion of myelodysplastic syndrome in May of 2018. In the biopsy examination, the individual bloodline did not show dysplastic features and the number of blasts was not increased. The marrow interstitium was 70% permeated with gaucher cells with intraplasmatic fibrous material. Cells were in the appearance of „crumpled paper“ and expressed CD68 in immunohistochemical stain and in histochemical examination of PAS and iron (Fe) staining. Based on a morphological finding, Gauchers disease was suspected. Repeated bone marrow aspirates were subsequently captured by gaucher cells, and a next biochemical examination showed a β-glucocerebrosidase enzyme decrease of activity. Gaucher disease is a progressive disease that requires early diagnosis with the onset of therapy.


Asunto(s)
Enfermedad de Gaucher , Síndromes Mielodisplásicos , Adolescente , Niño , República Checa , Femenino , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/diagnóstico , Glucosilceramidasa/genética , Humanos , Mutación , Síndromes Mielodisplásicos/diagnóstico
12.
Angew Chem Int Ed Engl ; 60(10): 5436-5442, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238058

RESUMEN

Genetic, preclinical and clinical data link Parkinson's disease and Gaucher's disease and provide a rational entry point to disease modification therapy via enhancement of ß-Glucocerebrosidase (GCase) activity. We discovered a new class of pyrrolo[2,3-b]pyrazine activators effecting both Vmax and Km. They bind to human GCase and increase substrate metabolism in the lysosome in a cellular assay. We obtained the first crystal structure for an activator and identified a novel non-inhibitory binding mode at the interface of a dimer, rationalizing the observed structure-activity relationship (SAR). The compound binds GCase inducing formation of a dimeric state at both endoplasmic reticulum (ER) and lysosomal pHs, as confirmed by analytical ultracentrifugation. Importantly, the pyrrolo[2,3-b]pyrazines have central nervous system (CNS) drug-like properties. Our findings are important for future drug discovery efforts in the field of GCase activation and provide a deeper mechanistic understanding of the requirements for enzymatic activation, pointing to the relevance of dimerization.


Asunto(s)
Activadores de Enzimas/metabolismo , Glucosilceramidasa/metabolismo , Multimerización de Proteína/efectos de los fármacos , Pirazinas/metabolismo , Pirroles/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Activadores de Enzimas/química , Glucosilceramidasa/química , Humanos , Cinética , Estructura Molecular , Unión Proteica , Pirazinas/química , Pirroles/química , Relación Estructura-Actividad
13.
Protein Expr Purif ; 170: 105573, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981620

RESUMEN

Antibodies specific to ß-Glucocerebrosidase were selected from phage displayed naïve scFv libraries. Biopannings were performed against recombinant human protein ß-Glucocerebrosidase immobilized on polystyrene surface, specific phages were eluted with 50% ethylene glycol in citrate buffer (pH 6.0). Several specific binders were discovered and converted to full-size hIgG1 antibodies leading to highly stable binders with dissociation constants (Kd) in the range 10-40 nM. The antibodies were used further as ligands for affinity chromatography, where efficient and selective recovery of biologically active ß-Glucocerebrosidase from cultured media of Chinese hamster ovary cells was demonstrated. ß-Glucocerebrosidase was purified to nearly homogeneous state and had specific activity comparable to the commercially available preparations (40-44 U/mg protein). The obtained immunoaffinity sorbents have high capacity and can be easily regenerated.


Asunto(s)
Cromatografía de Afinidad/métodos , Enzimas Inmovilizadas/aislamiento & purificación , Glucosilceramidasa/aislamiento & purificación , Biblioteca de Péptidos , Anticuerpos de Cadena Única/aislamiento & purificación , Animales , Especificidad de Anticuerpos , Células CHO , Cricetulus , Pruebas de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/inmunología , Glicol de Etileno/química , Glucósidos/química , Glucosilceramidasa/química , Glucosilceramidasa/inmunología , Humanos , Cinética , Ligandos , Poliestirenos/química , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/química
14.
Clin Chem Lab Med ; 58(12): 2017-2024, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32589593

RESUMEN

Objectives Gaucher disease (GD) is the most common inherited lysosomal storage disease, caused by mutations in acid ß-glucosidase (GBA) gene. This study aimed to identify mutations in Andalusia patients with GD and their genotype-phenotype correlation. Methods Descriptive observational study. University Hospital Virgen del Rocio patients diagnosed from GD from 1999 to 2019 were included. Demographic and clinical data, ß-glucocerebrosidase activity, variants pathogenic in GBA gene and biomarkers for monitoring treatment were collected from digital medical record. Results Twenty-six patients with aged between 1 day and 52 years were studied. A total of six mutations described as pathogenic and one mutation not described above [c.937T>C (p.Tyr313His)] were identified in the GBA gene, four patients were homozygotes and 22 compound heterozygotes. Twenty-four patients were diagnosed in non-neuropathic form (type 1) and two cases presented neurological involvement (type 2 or 3). The most common variant was c.1226A>G (p.Asn409Ser), which was detected in 24 patients, followed by c.1448T>C (p.Leu483Pro) variant, identified in 13 patients. The c.1448T>C (p.Leu483Pro) mutation has been presented in the most severe phenotypes with neurological involvement associated with type 2 and 3 GD, while c.1226A>G (p.Asn409Ser) mutation has not been associated with neurological alterations. Splenomegaly and bone disease were the most frequent clinical manifestations, and thrombocytopenia was the most common hematological disorder. Conclusions The c.1226A>G (p.Asn409Ser) and c.1448T>C (p.Leu483Pro) mutations were the most common. The c.937T>C (p.Tyr313His) was identified as a novel mutation. The c.1448T>C (p.Leu483Pro) mutation was associated with neurological alterations and c.1226A>G (p.Asn409Ser) mutation has not been associated it.


Asunto(s)
Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , beta-Glucosidasa/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Glucosilceramidasa/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , España/epidemiología , beta-Glucosidasa/metabolismo
15.
Exp Parasitol ; 216: 107939, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32535115

RESUMEN

Gaucher disease is a lysosomal storage disease in which a genetic deficiency in ß-glucocerebrosidase leads to the accumulation of glycosphingolipids in lysosomes. Macrophages are amongst the cells most severely affected in Gaucher disease patients. One phenotype associated with Gaucher macrophages is the impaired capacity to fight bacterial infections. Here, we investigate whether inhibition of ß-glucocerebrosidase activity affects the capacity of macrophages to phagocytose and act on the early containment of human pathogens of the genus Leishmania. Towards our aim, we performed in vitro infection assays on macrophages derived from the bone marrow of C57BL/6 mice. To mimic Gaucher disease, macrophages were incubated with the ß-glucocerebrosidase inhibitor, conduritol B epoxide (CBE), prior to contact with Leishmania. This treatment guaranteed that ß-glucocerebrosidase was fully inhibited during the contact of macrophages with Leishmania, its enzymatic activity being progressively recovered along the 48 h that followed removal of the inhibitor. Infections were performed with L. amazonensis, L. infantum, or L. major, so as to explore potential species-specific responses in the context of ß-glucocerebrosidase inactivation. Parameters of infection, recorded immediately after phagocytosis, as well as 24 and 48 h later, revealed no noticeable differences in the infection parameters of CBE-treated macrophages relative to non-treated controls. We conclude that blocking ß-glucocerebrosidase activity during contact with Leishmania does not interfere with the phagocytic capacity of macrophages and the early onset of leishmanicidal responses.


Asunto(s)
Glucosilceramidasa/antagonistas & inhibidores , Leishmania/fisiología , Macrófagos/parasitología , Fagocitosis , Animales , Inhibidores Enzimáticos/farmacología , Citometría de Flujo , Enfermedad de Gaucher/complicaciones , Enfermedad de Gaucher/fisiopatología , Glucosilceramidasa/efectos de los fármacos , Glucosilceramidasa/genética , Inositol/análogos & derivados , Inositol/farmacología , Leishmania infantum/fisiología , Leishmania major/fisiología , Leishmania mexicana/fisiología , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Fagocitosis/efectos de los fármacos
16.
Molecules ; 25(20)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050585

RESUMEN

The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal ß-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis of N-alkylated iminosugar scaffolds conjugated to a variety of terminal groups via a benzoic acid ester linker. The terminal groups such as nitrile, azide, alkyne, nonafluoro-tert-butyl and amino substituents enable follow-up chemistry as well as visualisation experiments. All compounds showed promising inhibitory properties as well as selectivities for ß-glucosidases, some exhibiting activities in the low nanomolar range for ß-glucocerebrosidase.


Asunto(s)
Glucosilceramidasa/metabolismo , Lisosomas/enzimología , Ácido Benzoico/metabolismo , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular
17.
Bioorg Chem ; 86: 652-664, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30825709

RESUMEN

The synthesis of a library of pyrrolidine-aryltriazole hybrids through CuAAC between two epimeric dihydroxylated azidomethylpyrrolidines and differently substituted phenylacetylenes is reported. The evaluation of the new compounds as inhibitors of lysosomal ß-glucocerebrosidase showed the importance of the substitution pattern of the phenyl moiety in the inhibition. Crystallization and docking studies revealed key interactions of the pyrrolidine motif with aminoacid residues of the catalytic site while the aryltriazole moiety extended along a hydrophobic surface groove. Some of these compounds were able to increase the enzyme activity in Gaucher patient fibroblasts, acting as a new type of chemical chaperone for Gaucher disease.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucosilceramidasa/antagonistas & inhibidores , Iminoazúcares/farmacología , Pirrolidinas/farmacología , Triazoles/farmacología , Biocatálisis , Línea Celular , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Iminoazúcares/síntesis química , Iminoazúcares/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Pirrolidinas/química , Relación Estructura-Actividad , Propiedades de Superficie , Triazoles/química
18.
Proc Natl Acad Sci U S A ; 113(14): 3791-6, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27001828

RESUMEN

The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of ß-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2-derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies.


Asunto(s)
Glucosilceramidasa/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Sitios de Unión , Células COS , Línea Celular , Chlorocebus aethiops , Cristalografía por Rayos X , Glucosilceramidasa/genética , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Ratones , Unión Proteica , Estructura Terciaria de Proteína
19.
Mol Genet Metab ; 123(2): 135-139, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100779

RESUMEN

Deficiency of ß-Glucocerebrosidase (GBA) activity causes Gaucher Disease (GD). GD can be diagnosed by measuring GBA activity (Beutler and Kuhl, 1990). In this study, we assayed dried blood spots from a cohort (n=528) enriched for GBA mutation carriers (n=78) and GD patients (n=18) using both the tandem mass spectrometry (MS/MS) and fluorescence assays and their respective synthetic substrates. The MS/MS assay differentiated normal controls, which included GBA mutation carriers, from GD patients with no overlap. The fluorescence assay did not always differentiate normal controls including GBA mutation carriers from GD patients and false positives were observed. The MS/MS assay improved specificity compared to the fluorescence assay.


Asunto(s)
Biomarcadores/sangre , Pruebas con Sangre Seca , Fluorescencia , Enfermedad de Gaucher/diagnóstico , Glucosilceramidasa/sangre , Tamizaje Masivo , Espectrometría de Masas en Tándem/métodos , Bioensayo , Recolección de Muestras de Sangre , Estudios de Casos y Controles , Estudios de Cohortes , Enfermedad de Gaucher/metabolismo , Humanos
20.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308956

RESUMEN

The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.


Asunto(s)
Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Linfocitos/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Mutación Missense , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , beta-Glucosidasa/genética , Alelos , Biomarcadores , Línea Celular , Activación Enzimática , Glucosilceramidasa/metabolismo , Glucosilceramidas/metabolismo , Humanos , beta-Glucosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA