Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815651

RESUMEN

In insects, the loss of flight typically involves a dispersal-reproduction transition, but the underlying molecular mechanisms remain poorly understood. In the parthenogenetic pea aphid Acyrthosiphon pisum, winged females undergo flight-muscle degeneration after flight and feeding on new host plants. Similarly, topical application of a juvenile hormone (JH) mimic to starved aphids also induces flight-muscle degeneration. We found that feeding preferentially upregulated the expression of the JH receptor gene Met and a JH-inducible gene, Kr-h1, in the flight muscles, and, thus, enhanced tissue-specific JH sensitivity and signaling. RNAi-mediated knockdown of Kr-h1 prevented flight-muscle degeneration. Likewise, blocking nutritional signals by pharmacological inhibition of the target of rapamycin complex 1 (TORC1) impaired JH sensitivity of the flight muscles in feeding aphids and subsequently delayed muscle degeneration. RNA-sequencing analysis revealed that enhanced JH signaling inhibited the transcription of genes involved in the tricarboxylic acid cycle, likely resulting in reduction of the energy supply, mitochondrial dysfunction and muscle-fiber breakdown. This study shows that nutrient-dependent hormone sensitivity regulates developmental plasticity in a tissue-specific manner, emphasizing a relatively underappreciated mechanism of hormone sensitivity in modulating hormone signaling.


Asunto(s)
Áfidos , Hormonas Juveniles , Animales , Áfidos/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Músculos/metabolismo , Reproducción , Alas de Animales/metabolismo
2.
BMC Microbiol ; 24(1): 231, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951812

RESUMEN

BACKGROUND: Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS: The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS: This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.


Asunto(s)
Áfidos , Bacillus , Insecticidas , Lipopéptidos , Animales , Áfidos/efectos de los fármacos , Bacillus/genética , Bacillus/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/química , Lipopéptidos/metabolismo , Lipopéptidos/aislamiento & purificación , Insecticidas/farmacología , Insecticidas/metabolismo , Insecticidas/química , Familia de Multigenes , Metabolismo Secundario , Control Biológico de Vectores , Secuenciación Completa del Genoma , Genoma Bacteriano/genética
3.
Arch Insect Biochem Physiol ; 115(4): e22112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605672

RESUMEN

Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect ß-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.


Asunto(s)
Áfidos , Trehalasa , Animales , Amigdalina , Áfidos/efectos de los fármacos , Áfidos/enzimología , Inositol/análogos & derivados , Nitrilos , Floretina , Florizina , Trehalasa/antagonistas & inhibidores
4.
Pestic Biochem Physiol ; 202: 105915, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879296

RESUMEN

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.


Asunto(s)
Áfidos , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Animales , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Staphylococcus aureus/fisiología , Escherichia coli , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Beauveria/fisiología
5.
J Environ Sci Health B ; 59(2): 37-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38088334

RESUMEN

One of the major insect pests in Pisum sativum L. (is Acyrthosiphon pisum Harris (Hemiptera: pests in Pisum sativum L. (Hemiptera: Aphididae) is Acyrthosiphon pisum Harris (Hemiptera: Aphididae). An effective strategy for aphid control is the resistant host plant use. The current study aimed to identify resistance mechanisms and assess biochemical and morphological markers of pea aphid resistance in pea accessions. Meteorological variables affected the pea aphid density, which positively correlated with temperature, while precipitation amount and humidity negatively impacted. The aphid number was significantly and positively associated with the leaf area and the nitrogen content but negatively correlated with calcium and phosphorus levels. The pea aphid-resistant cultivars L 123-7-11, L 128-1and L 125-5 had small leaf areas, and high phosphorus and calcium content but a low nitrogen level. In the mutual influence of the plant indicators, phosphorus concentration had the highest negative impact on pea aphid density, followed by calcium. The plant marker inclusion in the pea breeding process is an efficient tool for a substantial selection program improvement for aphid resistance. Therefore, resistant host plants are essential tools promoting considerable selection program improvement for aphid resistance in the P. sativum breeding process and helping develop sustainable and environmentally friendly agriculture.


Asunto(s)
Áfidos , Pisum sativum , Animales , Calcio , Nitrógeno , Fósforo/farmacología
6.
J Virol ; 96(3): e0138821, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34818072

RESUMEN

Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (here named SCSA 1) on various important traits of Faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation, and viral transmission. The results indicate that SCSA 1 does not affect the severity of symptoms nor overall FBNYV accumulation in V. faba, but it does change the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to the simple increase of viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. IMPORTANCE Alphasatellites are circular single-stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruses, the two ssDNA plant-infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here, we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, Faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both the plant and the vector. We also confirm that although within-plant virus load and symptoms are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load but significantly increases virus transmission rate, and thus it may confer a possible evolutionary advantage for the helper virus.


Asunto(s)
ADN Viral , Genoma Viral , Genómica , Nanovirus/fisiología , Enfermedades de las Plantas/virología , Replicación Viral , Genómica/métodos , Estadios del Ciclo de Vida , Virus de Plantas/fisiología , Vicia faba/virología , Carga Viral
7.
New Phytol ; 239(1): 286-300, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010085

RESUMEN

Plant disease occurs simultaneously with insect attack. Arbuscular mycorrhizal fungi (AMF) modify plant biotic stress response. Arbuscular mycorrhizal fungi and pathogens may modify plant volatile organic compound (VOC) production and insect behavior. Nevertheless, such effects are rarely studied, particularly for mesocosms where component organisms interact with each other. Plant-mediated effects of leaf pathogen (Phoma medicaginis) infection on aphid (Acyrthosiphon pisum) infestation, and role of AMF (Rhizophagus intraradices) in modifying these interactions were elucidated in a glasshouse experiment. We evaluated alfalfa disease occurrence, photosynthesis, phytohormones, trypsin inhibitor (TI) and total phenol response to pathogen and aphid attack, with or without AMF, and aphid behavior towards VOCs from AMF inoculated and non-mycorrhizal alfalfa, with or without pathogen infection. AM fungus enhanced alfalfa resistance to pathogen and aphid infestation. Plant biomass, root : shoot ratio, net photosynthetic rate, transpiration rate, stomatal conductance, salicylic acid, and TI were significantly increased in AM-inoculated alfalfa. Arbuscular mycorrhizal fungi and pathogen significantly changed alfalfa VOCs. Aphids preferred VOCs of AM-inoculated and nonpathogen-infected to nonmycorrhizal and pathogen-infected alfalfa. We propose that AMF alter plant response to multiple biotic stresses in ways both beneficial and harmful to the plant host, providing a basis for strategies to manage pathogens and herbivore pests.


Asunto(s)
Áfidos , Micorrizas , Animales , Micorrizas/fisiología , Áfidos/fisiología , Medicago sativa/metabolismo , Medicago sativa/microbiología , Pisum sativum
8.
Mol Ecol ; 32(4): 936-950, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458425

RESUMEN

Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.


Asunto(s)
Áfidos , Virus ARN , Avispas , Animales , Áfidos/genética , Simbiosis/genética , Enterobacteriaceae/genética , Virus ARN/genética
9.
Bull Entomol Res ; 113(4): 439-448, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36961106

RESUMEN

Alfalfa (Medicago sativa L.) hosts several species of aphid, Acyrthosiphon pisum (Harris), Aphis craccivora Koch and Therioaphis trifolii (Monell). The preference of the aphids of alfalfa plants for dense assemblies or individual plants, as well as for healthy or infested plants, was investigated in the field as in the laboratory. Years of field research have revealed the specific preferences of all three species of aphid. A. pisum and T. trifolii are most commonly found in alfalfa crops, while A. craccivora is mostly found on alfalfa weeds. Also, a single species of aphid alone is usually present on a plant. In order to determine the reason for this clear preference and to establish whether at the very beginning, i.e. at the stage of choosing a host, aphid species distance themselves from each other, we tested the effect of the volatiles of healthy and infested plants on their attractiveness to aphids. A. craccivora is repelled by the volatiles of dense crops and plants previously infested with one of the other two species. A. pisum and T. trifolii choose a dense assembly of plants, repelled by the volatiles of plants previously infested with A. craccivora. A. pisum displays the weakest competitive traits, and A. craccivora the strongest. This research showed that competition between aphid species does not occur only when they find themselves on the same plant at the same time, fighting for resources, but also in the choice of plant, in order to avoid later competition.


Asunto(s)
Áfidos , Animales , Medicago sativa , Productos Agrícolas , Fenotipo , Malezas
10.
Proc Natl Acad Sci U S A ; 117(51): 32545-32556, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288705

RESUMEN

Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphid-specific functions.


Asunto(s)
Áfidos/citología , Áfidos/fisiología , Apoptosis/fisiología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Animales , Animales Modificados Genéticamente , Caspasas/química , Caspasas/metabolismo , Drosophila melanogaster/genética , Ojo/citología , Ojo/patología , Regulación de la Expresión Génica , Genoma de los Insectos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas de Insectos/genética , Filogenia , Dominios Proteicos
11.
Mol Biol Evol ; 38(3): 856-875, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32966576

RESUMEN

Chromosome rearrangements are arguably the most dramatic type of mutations, often leading to rapid evolution and speciation. However, chromosome dynamics have only been studied at the sequence level in a small number of model systems. In insects, Diptera and Lepidoptera have conserved genome structure at the scale of whole chromosomes or chromosome arms. Whether this reflects the diversity of insect genome evolution is questionable given that many species exhibit rapid karyotype evolution. Here, we investigate chromosome evolution in aphids-an important group of hemipteran plant pests-using newly generated chromosome-scale genome assemblies of the green peach aphid (Myzus persicae) and the pea aphid (Acyrthosiphon pisum), and a previously published assembly of the corn-leaf aphid (Rhopalosiphum maidis). We find that aphid autosomes have undergone dramatic reorganization over the last 30 My, to the extent that chromosome homology cannot be determined between aphids from the tribes Macrosiphini (Myzus persicae and Acyrthosiphon pisum) and Aphidini (Rhopalosiphum maidis). In contrast, gene content of the aphid sex (X) chromosome remained unchanged despite rapid sequence evolution, low gene expression, and high transposable element load. To test whether rapid evolution of genome structure is a hallmark of Hemiptera, we compared our aphid assemblies with chromosome-scale assemblies of two blood-feeding Hemiptera (Rhodnius prolixus and Triatoma rubrofasciata). Despite being more diverged, the blood-feeding hemipterans have conserved synteny. The exceptional rate of structural evolution of aphid autosomes renders them an important emerging model system for studying the role of large-scale genome rearrangements in evolution.


Asunto(s)
Áfidos/genética , Evolución Biológica , Cromosomas de Insectos , Genoma de los Insectos , Cromosoma X , Animales , Elementos Transponibles de ADN , Femenino , Masculino , Sintenía
12.
Am Nat ; 199(3): 380-392, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35175898

RESUMEN

AbstractInsect herbivores, such as aphids, are common on plants, yet how they interact with plant microbiomes remains largely unknown. For instance, for the widespread bacterial epiphyte and potential aphid pathogen Pseudomonas syringae, aphids could impact bacterial populations by serving as secondary hosts or by altering the epiphytic habitat through feeding and/or waste secretion. Here, we examined whether the pea aphid, Acyrthosiphon pisum, could influence epiphytic populations of P. syringae. First, we quantified epiphytic growth ability without aphids and virulence to aphids across 21 diverse P. syringae strains. For eight strains that varied in these traits we then assessed the influence of aphid presence on epiphytic bacterial growth. In some cases P. syringae benefited significantly from the presence of aphids, with up to 3.8 times more cell doublings. This benefit was not correlated with strain traits but rather with initial population densities; smaller bacterial populations received relatively more benefit from aphids, and larger populations received less benefit. Honeydew, the sugary waste product of aphids, in the absence of aphids was sufficient to increase P. syringae density on leaves. We conclude that aphid honeydew can sometimes increase P. syringae epiphytic growth but that the bacteria may not benefit from using aphids as hosts.


Asunto(s)
Áfidos , Animales , Áfidos/microbiología , Bacterias , Herbivoria , Pseudomonas syringae , Virulencia
13.
Anal Biochem ; 639: 114522, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34883071

RESUMEN

Insect cytochrome P450 plays major roles in detoxification of phytotoxin and insecticides. However, determination of P450 activity in aphids has variable success and there is no reliable method yet. In this study, we found that homogenizing the green peach aphid, Myzus persicae, in the 96-well microplate resulted in significantly higher P450 activities than those in Eppendorf tube. Homogenizing aphids in Eppendorf tube released uncharacterized compounds that inhibited aphids and pig liver P450 activities, whereas aphids homogenized in the microplate may not be completely ground and thus released fewer such inhibitors. Then, the microplate homogenization method was optimized as follows: one or two aphids were placed in one well of the 96 well-microplate and ground in phosphate buffer using pipette tips for 20 cycles, followed by addition of 7-ethoxycoumarin, and then incubated for 1 h at room temperature, after which glycine buffer-ethanol mixture was added to stop the reaction. This method is also suitable for the pea aphid, Acyrthosiphon pisum, and the bird cherry-oat aphid, Rhopalosiphum padi. These results highlight the importance of considering inhibitory effects of endogenous compounds in insects on their P450 activities and provide one possible method to reduce these inhibitory effects.


Asunto(s)
Áfidos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Pruebas de Enzimas/métodos , Proteínas de Insectos/metabolismo , Animales , Áfidos/efectos de los fármacos , Insecticidas/toxicidad
14.
Oecologia ; 198(2): 443-456, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35001172

RESUMEN

Many insect herbivores engage in apparent competition whereby two species interact through shared natural enemies. Upon insect attack, plants release volatile blends that attract natural enemies, but whether these volatiles mediate apparent competition between herbivores is not yet known. We investigate the role of volatiles that are emitted by bean plants upon infestation by Acyrthosiphon pisum aphids on the population dynamics and fitness of Sitobion avenae aphids, and on wheat phloem sap metabolites. In a field experiment, the dynamics of S. avenae aphids on wheat were studied by crossing two treatments: exposure of aphid colonies to A. pisum-induced bean volatiles and exclusion of natural enemies. Glasshouse experiments and analyses of primary metabolites in wheat phloem exudates were performed to better understand the results from the field experiment. In the field, bean volatiles did not affect S. avenae dynamics or survival when aphids were exposed to natural enemies. When protected from them, however, volatiles led to larger aphid colonies. In agreement with this observation, in glasshouse experiments, aphid-induced bean volatiles increased the survival of S. avenae aphids on wheat plants, but not on an artificial diet. This suggests that volatiles may benefit S. avenae colonies via metabolic changes in wheat plants, although we did not find any effect on wheat phloem exudate composition. We report a potential case of associational susceptibility whereby plant volatiles weaken the defences of receiving plants, thus leading to increased herbivore performance.


Asunto(s)
Áfidos , Fabaceae , Animales , Herbivoria , Triticum
15.
J Environ Sci Health B ; 57(11): 905-915, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36367047

RESUMEN

Botanical products have an important role in the development of sustainable and ecologically friendly agriculture. Therefore, this study is focused on assessing the insecticidal activity of botanical products (Pyrethro Natura and Rapax) applied individually and in combination with an organic fertilizer (Fitasio) against Acyrthosiphon pisum. Further the change in the plastid pigments concentrations, productivity as well as product selectivity on Coccinella septempunctata larvae was explored. The experiment was conducted at the fields of the Institute of Forage crops, Pleven, Bulgaria from 2019 to 2021 year in spring forage peas. An alternate method of assessing the insecticide efficacy was used based on insect days and cumulative insect days. It was found that the mixture of Pyrethro Natura and Phytasio was associated with the highest overall efficacy against A. pisum and a reduction of cumulative insect days by 64.4% through a span of 9 days with an additive interaction between compounds. The botanical products used had a beneficial effect on the vegetative development of the plants. The Pyrethro Natura in combination with Fitasio provided the highest productivity of 30.7%, content of plastid pigments, and the best plant physiological condition. Botanicals were harmless with toxicity not exceeding 25% against ladybug larvae and displayed an important perspective due to their multiple benefits.


Asunto(s)
Áfidos , Escarabajos , Insecticidas , Animales , Pisum sativum/fisiología , Áfidos/fisiología , Larva , Insecticidas/farmacología
16.
Proc Biol Sci ; 288(1953): 20210787, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34187194

RESUMEN

The spatial interaction of clonal organisms is an unsolved but crucial topic in evolutionary biology. We evaluated the interactions between aphid clones using a colour mutant (yellow) and an original (green) clone. Colonies founded by two aphids of the same clone and mixed colonies, founded by a green aphid and a yellow aphid, were set up to observe population growth for 15 days. We confirmed positive competition effects, with mixed colonies increasing in size more rapidly than clonal colonies. In mixed colonies where reproduction started simultaneously, green aphids overwhelmed yellow aphids in number, and yellow aphids restrained reproduction. However, when yellow aphids started to reproduce earlier, they outnumbered the green aphids. To test whether aphids have the ability to control reproduction according to the densities of self and non-self clones, one yellow aphid or one antennae-excised yellow aphid was transferred into a highly dense green clone colony. Intact yellow aphids produced fewer nymphs in crowded green colonies, whereas the fecundity of antennae-excised aphids did not change. Thus, we conclude that aphid clones can discriminate between self and non-self clones, and can regulate their reproduction, depending on whether they are superior or inferior in number to their competitors.


Asunto(s)
Áfidos , Animales , Evolución Biológica , Fertilidad , Pisum sativum , Reproducción
17.
Microb Ecol ; 82(4): 1009-1019, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33704553

RESUMEN

Ecological specialization is widespread in animals, especially in phytophagous insects, which have often a limited range of host plant species. This host plant specialization results from divergent selection on insect populations, which differ consequently in traits like behaviors involved in plant use. Although recent studies highlighted the influence of symbionts on dietary breadth of their insect hosts, whether these microbial partners influence the foraging capacities of plant-specialized insects has received little attention. In this study, we used the pea aphid Acyrthosiphon pisum, which presents distinct plant-specialized lineages and several secondary bacterial symbionts, to examine the possible effects of symbionts on the different foraging steps from plant searching to host plant selection. In particular, we tested the effect of secondary symbionts on the aphid capacity (1) to explore habitat at long distance (estimated through the production of winged offspring), (2) to explore habitat at short distance, and (3) to select its host plant. We found that secondary symbionts had a variable influence on the production of winged offspring in some genotypes, with potential consequences on dispersal and survival. By contrast, symbionts influenced both short-distance exploration and host plant selection only marginally. The implication of symbionts' influence on insect foraging capacities is discussed.


Asunto(s)
Áfidos , Animales , Genotipo , Pisum sativum , Fenotipo , Simbiosis
18.
Arch Insect Biochem Physiol ; 108(1): e21797, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34272770

RESUMEN

Cold temperatures are one of the factors influencing color polymorphisms in Acyrthosiphon pisum, resulting in a change from a red to greenish color. Here we characterized gene expression profiles of A. pisum under different low temperatures (1°C, 4°C, 8°C, and 14°C) and durations (3, 6, 12, and 24 h). The number of differentially expressed genes (DEGs) increased as temperatures decreased and time increased, but only a small number of significant DEGs were identified. Genes involved in pigment metabolism were downregulated. An interaction network analysis for 506 common DEGs in comparisons among aphids exposed to 1°C for four durations indicated that a cytochrome P450 gene (CYP, LOC112935894) significantly downregulated may interact with a carotenoid metabolism gene (LOC100574964), similar to other genes encoding CYP, lycopene dehydrogenase and fatty acid synthase. We proposed that the body color shift in A. pisum responding to low temperatures may be regulated by CYPs.


Asunto(s)
Áfidos , Frío , Sistema Enzimático del Citocromo P-450/genética , Pigmentación/genética , Animales , Áfidos/genética , Áfidos/metabolismo , Ácido Graso Sintasas/genética , Genoma de los Insectos , RNA-Seq/métodos , Transcriptoma
19.
Adv Exp Med Biol ; 1261: 217-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33783744

RESUMEN

All the organisms that belong to the animal kingdom had been believed not to synthesize carotenoids de novo. However, several groups of arthropods, which contain aphids, spider mites, and flies belonging to the family Cecidomyiidae, have been unexpectedly shown to possess carotenoid biosynthesis genes of fungal origin since 2010. On the other hand, few reports have shown direct evidence corroborating the catalytic functions of the enzymes that the carotenogenic genes encode. In the present review, we want to overview the carotenoid biosynthetic pathway of the pea aphid (Acyrthosiphon pisum), which was elucidated through functional analysis of carotenogenic genes that exist on its genome using Escherichia coli that accumulates carotenoid substrates, in addition to carotenoid biosynthesis in the other carotenogenic arthropods.


Asunto(s)
Áfidos , Carotenoides , Animales , Áfidos/genética , Genes Fúngicos
20.
Proc Natl Acad Sci U S A ; 115(8): E1819-E1828, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432146

RESUMEN

Symbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of bacteriocytes in the hemipteran insect Acyrthosiphon pisum This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of bacteriocyte biological functioning.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Simbiosis/fisiología , Animales , Muerte Celular , Lisosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA