Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.058
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941447

RESUMEN

Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in two transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.

2.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865263

RESUMEN

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Asunto(s)
Virus ARN , Ribonucleasa III , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Virus ARN/inmunología , Virus ARN/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ascomicetos/virología , Interferencia de ARN , Replicación Viral/genética , ARN Viral/metabolismo , ARN Viral/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ARN Bicatenario/metabolismo
3.
Plant J ; 117(2): 404-415, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856521

RESUMEN

By conducting hierarchical clustering along a sliding window, we generated haplotypes across hundreds of re-sequenced genomes in a few hours. We leveraged our method to define cryptic introgressions underlying disease resistance in tomato (Solanum lycopersicum L.) and to discover resistant germplasm in the tomato seed bank. The genomes of 9 accessions with early blight (Alternaria linariae) disease resistance were newly sequenced and analyzed together with published sequences for 770 tomato and wild species accessions, most of which are available in germplasm collections. Identification of common ancestral haplotypes among resistant germplasm enabled rapid fine mapping of recently discovered quantitative trait loci (QTL) conferring resistance and the identification of possible causal variants. The source of the early blight QTL EB-9 was traced to a vintage tomato named 'Devon Surprise'. Another QTL, EB-5, as well as resistance to bacterial spot disease (Xanthomonas spp.), was traced to Hawaii 7998. A genomic survey of all accessions forecasted EB-9-derived resistance in several heirloom tomatoes, accessions of S. lycopersicum var. cerasiforme, and S. pimpinellifolium PI 37009. Our haplotype-based predictions were validated by screening the accessions against the causal pathogen. There was little evidence of EB-5 prevalence in surveyed contemporary germplasm, presenting an opportunity to bolster tomato disease resistance by adding this rare locus. Our work demonstrates practical insights that can be derived from the efficient processing of large genome-scale datasets, including rapid functional prediction of disease resistance QTL in diverse genetic backgrounds. Finally, our work finds more efficient ways to leverage public genetic resources for crop improvement.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Sitios de Carácter Cuantitativo/genética , Resistencia a la Enfermedad/genética , Fenotipo , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Trends Genet ; 38(3): 218-221, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34702578

RESUMEN

Implementations and improvements of genome editing techniques used in plant science have increased exponentially. For some crops, such as potato, the use of transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) has moved to the next step of trait development and field trials, and should soon be applied to commercial cultivation.


Asunto(s)
Edición Génica , Solanum tuberosum , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Solanum tuberosum/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
5.
Plant Physiol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701041

RESUMEN

Bacteria from the genus Xanthomonas are prolific phytopathogens that elicit disease in over 400 plant species. Xanthomonads carry a repertoire of specialized proteins called transcription activator-like (TAL) effectors that promote disease and pathogen virulence by inducing expression of host susceptibility (S) genes. Xanthomonas phaseoli pv. manihotis (Xpm) causes bacterial blight on the staple food crop cassava (Manihot esculenta Crantz). The Xpm effector TAL20 induces ectopic expression of the S gene Manihot esculenta Sugars Will Eventually be Exported Transporter 10a (MeSWEET10a), which encodes a sugar transporter that contributes to cassava bacterial blight susceptibility. We used CRISPR/Cas9 to generate multiple cassava lines with edits to the MeSWEET10a TAL20 effector binding site and/or coding sequence. In several of the regenerated lines, MeSWEET10a expression was no longer induced by Xpm, and in these cases, we observed reduced cassava bacterial blight (CBB) disease symptoms post Xpm infection. Because MeSWEET10a is expressed in cassava flowers, we further characterized the reproductive capability of the MeSWEET10a promoter and coding sequence mutants. Lines were crossed to themselves and to wild-type plants. The results indicated that expression of MeSWEET10a in female, but not male, flowers, is critical to produce viable F1 seed. In the case of promoter mutations that left the coding sequence intact, viable F1 progeny were recovered. Taken together, these results demonstrate that blocking MeSWEET10a induction is a viable strategy for decreasing cassava susceptibility to CBB and that ideal lines will contain promoter mutations that block TAL effector binding while leaving endogenous expression of MeSWEET10a unaltered.

6.
Plant J ; 113(2): 277-290, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440495

RESUMEN

Phytochrome B (PhyB), a red-light receptor, plays important roles in diverse biological processes in plants; however, its function in NH4 + uptake and stress responses of plants is unclear. Here, we observed that mutation in indeterminate domain 10 (IDD10), which encodes a key transcription factor in NH4 + signaling, led to NH4 + -sensitive root growth in light but not in the dark. Genetic combinations of idd10 and phy mutants demonstrated that phyB, but not phyA or phyC, suppressed NH4 + -sensitive root growth of idd10. PhyB mutants and PhyB overexpressors (PhyB OXs) accumulated more and less NH4 + , respectively, compared with wild-type plants. Real time quantitative polymerase chain reaction (RT-qPCR) revealed that PhyB negatively regulated NH4 + -mediated induction of Ammonium transporter 1;2 (AMT1;2). AMT1 RNAi plants with suppressed AMT1;1, AMT1;2, and AMT1;3 expression exhibited shorter primary roots under NH4 + conditions. This suggested that NH4 + uptake might be positively associated with root growth. Further, PhyB interacted with and inhibited IDD10 and brassinazole-resistant 1 (BZR1). IDD10 interacted with BZR1 to activate AMT1;2. NH4 + uptake is known to promote resistance of rice (Oryza sativa) to sheath blight (ShB) and saline-alkaline stress. Inoculation of Rhizoctonia solani demonstrated that PhyB and IDD10 negatively regulated and AMT1 and BZR1 positively regulated resistance of rice to ShB. In addition, PhyB negatively regulated and IDD10 and AMT1 positively regulated resistance of rice to saline-alkaline stress. This suggested that PhyB-IDD10-AMT1;2 signaling regulates the saline-alkaline response, whereas the PhyB-BZR1-AMT1;2 pathway modulates ShB resistance. Collectively, these data prove that mutation in the PhyB gene enhances the resistance of rice to ShB and saline-alkaline stress by increasing NH4 + uptake.


Asunto(s)
Compuestos de Amonio , Oryza , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Compuestos de Amonio/metabolismo , Oryza/metabolismo , Mutación , Transducción de Señal , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant J ; 113(4): 649-664, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534114

RESUMEN

Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas
8.
Plant J ; 114(6): 1475-1489, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919201

RESUMEN

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive diseases of wheat (Triticum aestivum) around the world. FHB causes significant yield losses and reduces grain quality. The lack of resistance resources is a major bottleneck for wheat FHB resistance breeding. As a wheat relative, Thinopyrum elongatum contains many genes that can be used for wheat improvement. Although the novel gene Fhb-7EL was mapped on chromosome 7EL of Th. elongatum, successful transfer of the FHB resistance gene into commercial wheat varieties has not been reported. In this study, we developed 836 wheat-Th. elongatum translocation lines of various types by irradiating the pollen of the wheat-Th. elongatum addition line CS-7EL at the flowering stage, among which 81 were identified as resistant to FHB. By backcrossing the FHB-resistant lines with the main cultivar Jimai 22, three wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, were successfully applied in wheat breeding without yield penalty. Combining karyotype and phenotype analyses, we mapped the Fhb-7EL gene to the distal end of chromosome 7EL. Five molecular markers linked with the FHB resistance interval were developed, which facilitates molecular marker-assisted breeding. Altogether, we successfully applied alien chromatin with FHB resistance from Th. elongatum in wheat breeding without yield penalty. These newly developed FHB-resistant wheat-Th. elongatum translocation lines, Zhongke 1878, Zhongke 166, and Zhongke 545, can be used as novel resistance resources for wheat breeding.


Asunto(s)
Fusarium , Triticum , Triticum/genética , Fitomejoramiento , Marcadores Genéticos , Poaceae/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
9.
Plant J ; 114(1): 39-54, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36703574

RESUMEN

Phytopathogens pose a severe threat to agriculture and strengthening the plant defense response is an important strategy for disease control. Here, we report that AtRAV1, an AP2 and B3 domain-containing transcription factor, is required for basal plant defense in Arabidopsis thaliana. The atrav1 mutant lines demonstrate hyper-susceptibility against fungal pathogens (Rhizoctonia solani and Botrytis cinerea), whereas AtRAV1 overexpressing lines exhibit disease resistance against them. Enhanced expression of various defense genes and activation of mitogen-activated protein kinases (AtMPK3 and AtMPK6) are observed in the R. solani infected overexpressing lines, but not in the atrav1 mutant plants. An in vitro phosphorylation assay suggests AtRAV1 to be a novel phosphorylation target of AtMPK3. Bimolecular fluorescence complementation and yeast two-hybrid assays support physical interactions between AtRAV1 and AtMPK3. Overexpression of the native as well as phospho-mimic but not the phospho-defective variant of AtRAV1 imparts disease resistance in the atrav1 mutant A. thaliana lines. On the other hand, overexpression of AtRAV1 fails to impart disease resistance in the atmpk3 mutant. These analyses emphasize that AtMPK3-mediated phosphorylation of AtRAV1 is important for the elaboration of the defense response in A. thaliana. Considering that RAV1 homologs are conserved in diverse plant species, we propose that they can be gainfully deployed to impart disease resistance in agriculturally important crop plants. Indeed, overexpression of SlRAV1 (a member of the RAV1 family) imparts disease tolerance against not only fungal (R. solani and B. cinerea), but also against bacterial (Ralstonia solanacearum) pathogens in tomato, whereas silencing of the gene enhances disease susceptibility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ADN/genética
10.
Plant J ; 113(6): 1160-1175, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36609772

RESUMEN

Cisgenesis, the genetic modification of a plant with genes from a sexually compatible plant, was used to confer fire blight resistance to the cultivar 'Gala Galaxy' by amendment of the resistance gene FB_MR5, resulting in the line C44.4.146. To verify whether cisgenesis changed other tree-, flower- or fruit-related traits, a 5-year field trial was conducted with trees of C44.4.146 and multiple control genotypes, including members of the 'Gala' sports group. None of the 44 investigated tree-, flower- or fruit-related traits significantly differed between C44.4.146 and at least one of the control genotypes in all observation years. However, fruits of C44.4.146 and its wild-type 'Gala Galaxy' from tissue culture were paler in color than fruits of 'Gala Galaxy' that had not undergone tissue culture. There was no significant and consistently detected difference in the fruit flesh and peel metabolome of C44.4.146 compared with the control genotypes. Finally, the disease resistance of C44.4.146 was confirmed also when the fire blight pathogen was inoculated through the flowers. We conclude that the use of cisgenesis to confer fire blight resistance to 'Gala Galaxy' in C44.4.146 did not have unintended effects, and that the in vitro establishment of 'Gala Galaxy' had a greater effect on C44.4.146 properties than its generation applying cisgenesis.


Asunto(s)
Erwinia amylovora , Malus , Malus/genética , Enfermedades de las Plantas/genética , Frutas/genética , Resistencia a la Enfermedad/genética
11.
Mol Plant Microbe Interact ; 37(2): 143-154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381127

RESUMEN

Plant disease resistance (R) gene-mediated effector-triggered immunity (ETI) is usually associated with hypersensitive response (HR) and provides robust and race-specific disease resistance against pathogenic infection. The activation of ETI and HR in plants is strictly regulated, and improper activation will lead to cell death. Xa27 is an executor-type R gene in rice induced by the TAL effector AvrXa27 and confers disease resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here we reported the characterization of a transgenic line with lesion mimic phenotype, designated as Spotted leaf and resistance 1 (Slr1), which was derived from rice transformation with a genomic subclone located 5,125 bp downstream of the Xa27 gene. Slr1 develops spontaneous lesions on its leaves caused by cell death and confers disease resistance to both Xoo and Xanthomonas oryzae pv. oryzicola. Further investigation revealed that the Slr1 phenotype resulted from the ectopic expression of an Xa27 paralog gene, designated as Xa27B, in the inserted DNA fragment at the Slr1 locus driven by a truncated CaMV35Sx2 promoter in reverse orientation. Disease evaluation of IRBB27, IR24, and Xa27B mutants with Xoo strains expressing dTALE-Xa27B confirmed that Xa27B is a functional executor-type R gene. The functional XA27B-GFP protein was localized to the endoplasmic reticulum and apoplast. The identification of Xa27B as a new functional executor-type R gene provides additional genetic resources for studying the mechanism of executor-type R protein-mediated ETI and developing enhanced and broad-spectrum disease resistance to Xoo through promoter engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Oryza/genética , Expresión Génica Ectópica , Genes prv , Xanthomonas/genética , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
12.
BMC Genomics ; 25(1): 347, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580927

RESUMEN

BACKGROUND: The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. RESULTS: The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. CONCLUSIONS: This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen's life cycle and a solid foundation for studying EFB.


Asunto(s)
Ascomicetos , Corylus , Corylus/genética , Ascomicetos/genética , Fenotipo , Tamaño del Genoma
13.
Plant Mol Biol ; 114(3): 41, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625509

RESUMEN

Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.


Asunto(s)
Quitinasas , Oryza , Oryza/genética , Genotipo , Rhizoctonia , Quitinasas/genética
14.
Plant Mol Biol ; 114(3): 62, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771394

RESUMEN

Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/microbiología , Sitios de Carácter Cuantitativo/genética , Fusarium/fisiología , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Cromosomas de las Plantas/genética
15.
Plant Cell Physiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757819

RESUMEN

Xanthomonas species infect many important crops and cause huge yield loss. These pathogens deliver transcription activator-like (TAL) effectors into the cytoplasm of plant cells. TAL effectors move to host nuclei, directly bind to the promoters of host susceptible genes, and activate their transcription. However, the molecular mechanisms by which TAL effectors induce host transcription remain unclear. We herein demonstrated that TAL effectors interacted with the SIMILAR TO RCD ONE (SRO) family proteins OsSRO1a and OsSRO1b in nuclei. A transactivation assay using rice protoplasts indicated that OsSRO1a and OsSRO1b enhanced the activation of the OsSWEET14 promoter by the TAL effector AvrXa7. The AvrXa7-mediated expression of OsSWEET14 was significantly reduced in ossro1a mutants. However, the overexpression of OsSRO1a increased disease resistance by up-regulating the expression of defense-related genes, such as WRKY62 and PBZ1. This was attributed to OsSRO1a and OsSRO1b also enhancing the transcriptional activity of WRKY45, a direct regulator of WRKY62 expression. Therefore, OsSRO1a and OsSRO1b appear to positively contribute to transcription mediated by bacterial TAL effectors and rice transcription factors.

16.
BMC Plant Biol ; 24(1): 463, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802782

RESUMEN

BACKGROUND: Fusarium graminearum and Fusarium avenaceum are two of the most important causal agents of Fusarium head blight (FHB) of wheat. They can produce mycotoxins that accumulate in infected wheat heads, including deoxynivalenol (DON) and enniatins (ENNs), produced by F. graminearum and F. avenaceum, respectively. While the role of DON as a virulence factor in F. graminearum toward wheat is well known, ENNs in F. avenaceum has been poorly explored. Results obtained to-date indicate that ENNs may confer an advantage to F. avenaceum only on particular hosts. RESULTS: In this study, with the use of ENN-producing and ENN non-producing F. avenaceum strains, the role of ENNs on F. avenaceum virulence was investigated on the root, stem base and head of common wheat, and compared with the role of DON, using DON-producing and DON non-producing F. graminearum strains. The DON-producing F. graminearum strain showed a significantly higher ability to cause symptoms and colonise each of the tested tissues than the non-producing strain. On the other hand, the ability to produce ENNs increased initial symptoms of the disease and fungal biomass accumulation, measured by qPCR, only in wheat heads, and not in roots or stem bases. LC-MS/MS analysis was used to confirm the presence of ENNs and DON in the different strains, and results, both in vitro and in wheat heads, were consistent with the genetics of each strain. CONCLUSION: While the key role of DON on F. graminearum virulence towards three different wheat tissues was noticeable, ENNs seemed to have a role only in influencing F. avenaceum virulence on common wheat heads probably due to an initial delay in the appearance of symptoms.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Tricotecenos , Triticum , Triticum/microbiología , Triticum/metabolismo , Fusarium/patogenicidad , Fusarium/genética , Fusarium/metabolismo , Tricotecenos/metabolismo , Virulencia , Enfermedades de las Plantas/microbiología , Micotoxinas/metabolismo , Depsipéptidos
17.
BMC Plant Biol ; 24(1): 183, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475749

RESUMEN

BACKGROUND: Fusarium head blight (FHB) infection results in Fusarium damaged kernels (FDK) and deoxynivalenol (DON) contamination that are downgrading factors at the Canadian elevators. Durum wheat (Triticum turgidum L. var. durum Desf.) is particularly susceptible to FHB and most of the adapted Canadian durum wheat cultivars are susceptible to moderately susceptible to this disease. However, the durum line DT696 is less susceptible to FHB than commercially grown cultivars. Little is known about genetic variation for durum wheat ability to resist FDK infection and DON accumulation. This study was undertaken to map genetic loci conferring resistance to DON and FDK resistance using a SNP high-density genetic map of a DT707/DT696 DH population and to identify SNP markers useful in marker-assisted breeding. One hundred twenty lines were grown in corn spawn inoculated nurseries near Morden, MB in 2015, 2016 and 2017 and the harvested seeds were evaluated for DON. The genetic map of the population was used in quantitative trait locus analysis performed with MapQTL.6® software. RESULTS: Four DON accumulation resistance QTL detected in two of the three years were identified on chromosomes 1 A, 5 A (2 loci) and 7 A and two FDK resistance QTL were identified on chromosomes 5 and 7 A in single environments. Although not declared significant due to marginal LOD values, the QTL for FDK on the 5 and 7 A were showing in other years suggesting their effects were real. DT696 contributed the favourable alleles for low DON and FDK on all the chromosomes. Although no resistance loci contributed by DT707, transgressive segregant lines were identified resulting in greater resistance than DT696. Breeder-friendly KASP markers were developed for two of the DON and FDK QTL detected on chromosomes 5 and 7 A. Markers flanking each QTL were physically mapped against the durum wheat reference sequence and candidate genes which might be involved in FDK and DON resistance were identified within the QTL intervals. CONCLUSIONS: The DH lines harboring the desired resistance QTL will serve as useful resources in breeding for FDK and DON resistance in durum wheat. Furthermore, breeder-friendly KASP markers developed during this study will be useful for the selection of durum wheat varieties with low FDK and DON levels in durum wheat breeding programs.


Asunto(s)
Fusarium , Tricotecenos , Triticum , Triticum/genética , Fitomejoramiento , Canadá , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
18.
BMC Plant Biol ; 24(1): 131, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383294

RESUMEN

Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.


Asunto(s)
Inoculantes Agrícolas , Extractos Vegetales , Solanum lycopersicum , Zingiber officinale , Animales , Polvos , Alternaria , Bacterias , Enfermedades de las Plantas/microbiología
19.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637784

RESUMEN

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Asunto(s)
Alternaria , Nanopartículas del Metal , Quercus , Solanum lycopersicum , Plata/química , Nanopartículas del Metal/química , Antifúngicos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Antibacterianos
20.
BMC Plant Biol ; 24(1): 145, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413866

RESUMEN

BACKGROUND: Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS: In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION: Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.


Asunto(s)
Oryza , Xanthomonas , RNA-Seq , Oryza/metabolismo , Poliadenilación/genética , Resistencia a la Enfermedad/genética , Estrés Fisiológico , Xanthomonas/fisiología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA