Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 145: 109318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142019

RESUMEN

CD4-1 found in bony fish contains four extracellular immunoglobulin (Ig)-like domains similar to that of mammalian CD4, which is crucial for the activation of CD4+ helper T-cell. However, there is limited knowledge regarding the molecular markers, immune functions and regulation mechanism of CD4-1 in teleosts due to their vast diversity. In this study, we cloned and characterized two isoforms of Qihe crucian carp CD4-1, designated as CaCD4-1.1 and CaCD4-1.2. We further explored their expression responses upon stimulation with Aeromonas veronii, and the regulation of their immune responses against A. veronii by NF-κB. The ORF of CaCD4-1.1 and CaCD4-1.2 cDNA encoded 477 and 466 amino acids, respectively. Both proteins contained seven conserved cysteine residues in the extracellular domain, and a CCC motif in their cytoplasm, respectively. However, CaCD4-1.1 exhibited a relatively limited similarity with CaCD4-1.2 in the ectodomain. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the mRNA expression of CaCD4-1.1 and CaCD4-1.2 exhibited differential constitutive expression across all examined tissues. Furthermore, the expression level of CD4-1.2 was higher than that of CD4-1.1 in the gills, head kidney, and spleen of Qihe crucian carp subjected to A. veronii challenge, while it was lower in the trunk kidney. Inhibition of NF-κB activity resulted in a decrease in the expression levels of CD4-1.1 and CD4-1.2 mRNA in the gill, while inducing an increase in expression levels in the spleen, in accordance with the observed ultrastructural changes in both organs. Interestingly, the impact of NF-κB on the mRNA expression level of CD4-1.1 appears to be stronger than that of CD4-1.2. Our results suggest that CaCD4-1.1 and CaCD4-1.2 could be expressed on T cells and antigen-sampling cells that exhibit similar characteristics to mammalian M cells, respectively, and differentially regulated by NF-κB in adaptive immune responses against bacterial infection. This research contributes to a better understanding of the crucial role of CD4-1 in the immune response of Qihe crucian carp and provide novel insights for the prevention and treatment of fish diseases in aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpa Dorada , Carpas/metabolismo , FN-kappa B , Aeromonas veronii/genética , Inmunidad Innata/genética , ARN Mensajero , Proteínas de Peces/genética , Aeromonas hydrophila/fisiología , Mamíferos/metabolismo
2.
Platelets ; 35(1): 2313362, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38380806

RESUMEN

Coagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200-1000 nm) and large EVs/RCs (1000-4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50-200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.


What is the context? Coronavirus disease 19 (COVID-19) frequently leads to blood clotting disturbances, including thromboses.Particles smaller than cells, extracellular vesicles (EVs), and residual cells (RCs) affect blood clotting, but data on their role and diagnostic utility in COVID-19 are sparse.What is new? In this study, we assessed 50 hospitalized COVID-19 patients and 10 healthy controls for their different EV subpopulations and residual cells (50­4000 nm).Blood clotting marker D-dimer, which is elevated in severe COVID-19 infection, was used to characterize disease severity and stratify the patient subgroups. Fifteen patients (30%) with high D-dimer (>1.5 mg/L) were compared to controls, and 35 patients with lower D-dimer (≤1.5 mg/mL).The most topical state-of-the-art methods for detection of EV subpopulations, that is, high sensitivity flow cytometry (hsFCM) and single particle interferometric reflectance imaging sensor (SP-IRIS), were used with markers indicative of platelet, red blood cell, leukocyte or endothelial cells. The subpopulations differentiated by platelet and tetraspanin signatures by hsFCM and SP-IRIS, respectively.The main findings are Patients with high D-dimer systematically exhibited the highest number of platelet EVs in all subpopulations (p < .05).Small EVs subpopulations (differentiated by the tetraspanin signatures) could discriminate patients with low D-dimer (p < .001) from healthy controls.Differences between the two D-dimer groups were seen in the platelet-derived (large and medium EVs and RCs), RBC-derived mEVs and l EVs and RCs, and lactadherin-positive large EVs and RCs (p < .05).What is the impact? Platelet activation, reflected by increased EVs was associated with blood clotting disturbances. Small EVs signatures revealed changes in the EV subpopulations in association with blood clotting during COVID-19. Such signatures may enable identification of severely ill patients before the increase in coagulation is evident by coagulation parameters, for example, by high D-dimer.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , Células Endoteliales , Plaquetas , Activación Plaquetaria
3.
Biochem Biophys Res Commun ; 678: 179-185, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37643535

RESUMEN

Extracellular histones induce endothelial damage, resulting in lung haemorrhage; however, the underlying mechanism remains unclear. Factor XIII, as a Ca2+-dependent cross-linking enzyme in blood, mediates fibrin deposition. As another isozyme, transglutaminase 2 (TG2) has a catalytic activity distributing in most tissues. Herein, we investigated whether TG2 promotes fibrin deposition and mediates the adhesion of platelets to ECs in histone-induced acute lung injury (ALI). We evaluated the lung histology and the adhesion of platelets to endothelial cells (ECs) after injecting histones to wild-type (WT) C57BL/6J and TG2 knockout (TG2-/-) mice, and administered a TG2 inhibitor (NC9) to WT mice. Pulmonary haemorrhage was more severe in TG2-/- mice than that in WT mice. The area of fibrin deposition and the proportion of CD41+CD31+ cells were lower in TG2-/- mice than in WT mice. Pre-treatment of NC9 decreased the area of fibrin deposition and the proportion of CD41+CD31+ cells in WT mice. These results suggest that TG2 prevents from pulmonary haemorrhage in ALI by promoting the adhesion of platelets to ECs and the fibrin deposition.


Asunto(s)
Lesión Pulmonar Aguda , Células Endoteliales , Animales , Ratones , Ratones Endogámicos C57BL , Histonas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Lesión Pulmonar Aguda/inducido químicamente , Fibrina
4.
Fish Shellfish Immunol ; 138: 108785, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141958

RESUMEN

In this study, we established a murine cell line that expresses ginbuna crucian carp (ginbuna) CD4-2 and used it to develop an anti-CD4-2 monoclonal antibody (mAb). An established mAb, named D5, showed good reactivities to BALB/c 3T3 cells expressing CD4-2 and a lymphocyte population in the ginbuna leukocytes. Gene expression analysis showed that D5+ cells express CD4-2 and TCRß genes but not CD4-1 and IgM genes, meanwhile May Grunwald-Giemsa staining of sorted D5+ cells had the typical morphology of lymphocytes. Two-color immunofluorescence analysis with anti-CD4-1 mAb (6D1) and anti-CD4-2 mAb (D5) by flow cytometry revealed that the percentages of CD4-1 single positive (SP) and CD4-2 SP lymphocytes were comparatively higher than CD4-1/CD4-2 double positive (CD4 DP) lymphocytes in all tissues examined in ginbuna. The highest percentage of CD4-2 SP cells (∼40%) was found in the thymus, while the head-kidney exhibited the highest percentages of CD4-1 SP (∼30%) and CD4 DP (∼5%) cells. These findings indicated that ginbuna CD4+ lymphocyte population consists of two major subpopulations (CD4-1 SP and CD4-2 SP) and a minor subset (CD4 DP).


Asunto(s)
Carpas , Animales , Ratones , Carpas/genética , Carpa Dorada , Linfocitos T CD4-Positivos , Subgrupos Linfocitarios , Anticuerpos Monoclonales
5.
Fish Shellfish Immunol ; 123: 314-323, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35306178

RESUMEN

Thrombocytes are an important component in peripheral blood cells and play a crucial role in immune regulation. CD41 is one of the biomarkers of thrombocytes. In this study, grass carp (Ctenopharyngodon idella) CD41 protein was expressed in Escherichia coli and purified by affinity chromatography. Subsequently, New Zealand rabbits were immunized with this protein via subcutaneous injection. The antibody titer examined by enzyme linked immunosorbent assay was 1:12800. The concentration of rabbit polyclonal antibody purified by HiTrap-rprotein-AFF affinity chromatography column was 1.9 mg/mL. The specificity was identified by SDS-PAGE, Western blot, flow cytometry, and indirect immunofluorescence assays. The purified antibody was used to screen grass carp thrombocytes, and CD41+ cells were 14.13%. CD41+ cells were further verified by Giemsa staining, transmission electron microscopy and RT-PCR. mRNA expression of CD41 in thrombocytes was not affected by viral or bacterial challenge in vitro, while CD41 transcripts were remarkably induced post pathogenic infections in vivo, which results from the immature hematopoietic stem cells and thrombocytes. Indirect immunofluorescence assay revealed that grass carp reovirus (GCRV) could not invade thrombocytes; however, mRNA expressions of some representative innate immune genes (IFN1, IL-1ß, TNFα and Mx2) were significantly up-regulated post GCRV challenge. Meanwhile, the transcripts of some innate immune genes (IL-6 and TNFα) were swiftly increased post bacterial infection. These results indicated that the rabbit anti-CD41 polyclonal antibody possesses good specificity and can effectively bind to the CD41 protein on the surface of grass carp thrombocytes. Grass carp thrombocytes participate in immune regulation in viral and bacterial infections.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Virosis , Animales , Plaquetas , Proteínas de Peces/genética , Inmunidad , ARN Mensajero , Conejos , Reoviridae/fisiología , Factor de Necrosis Tumoral alfa
6.
Fish Shellfish Immunol ; 123: 453-459, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35339659

RESUMEN

CD4-a transmembrane glycoprotein molecule expressed on the surface of helper T (Th) cells-plays a central role in adaptive immune protection. In the current study, we developed a monoclonal antibody (mAb) against the grouper CD4-1. Western blotting and immunohistochemistry results revealed that the CD4-1 mAb could recognize the recombinant and natural protein of grouper CD4-1 as well as the CD4-1+ cells in the various tissues from grouper. Tissue distribution analyses revealed that the grouper CD4-1+ cells were expressed in all tissues tested in the healthy grouper, with greater localization in the thymus, head kidney, and spleen tissues. In addition, we tested the changes in the proportion of CD4-1+ cells in the thymus, head kidney, and the gills of grouper post the infection by C. irritans. Our data suggest that the CD4-1 mAb produced against grouper in the current study can be used as a tool to characterize CD4-1+ cells and to investigate the functions of the grouper CD4-1+ cells in the host response against pathogens infection.


Asunto(s)
Lubina , Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Animales , Anticuerpos Monoclonales/metabolismo , Cilióforos/fisiología , Proteínas de Peces/química , Filogenia
7.
Platelets ; 33(1): 110-115, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33284725

RESUMEN

Platelet-rich fibrin (PRF) has been widely applied in regenerative therapy owing to its simple preparation protocol. To date, the original protocol for preparing leukocyte-rich (L)-PRF has been modified to produce derivatives such as advanced (A)-PRF, concentrated growth factors (CGF), and horizontal (H)-PRF. However, these derivatives have not been rigorously compared to explore possible differences. We previously developed and validated a nondestructive near-infrared (NIR) imaging method to quantitatively examine the platelet distribution in PRF matrices. To further evaluate the characteristics of platelets in PRF, we herein examined the distribution of activated platelets. Four types of PRF matrices were prepared under different centrifugal conditions from blood samples obtained from the same healthy donors. After fixation and compression, the matrices were stained immunohistochemically without sectioning and visualized using an NIR imager. Qualitative morphological analysis revealed that whole platelets were distributed widely and homogeneously in H-PRF and A-PRF, but localized along the distal tube surface in L-PRF and CGF. Activated platelets were distributed as were whole platelets in A-PRF, L-PRF, and CGF, but localized mainly in the "buffy coat" region in H-PRF. Quantitative analysis revealed that there was no significant difference in the ratio of activated to whole platelets between PRF derivatives. These findings suggest that platelet activation is similarly induced in fibrin matrices regardless of centrifugal speed or rotor angulation. However, only the H-PRF group was distinguishable from the other PRF derivatives in terms of activated platelet distribution.


Asunto(s)
Plaquetas/metabolismo , Fibrina Rica en Plaquetas/metabolismo , Voluntarios Sanos , Humanos , Donantes de Tejidos
8.
Arch Biochem Biophys ; 703: 108846, 2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-33744198

RESUMEN

CCAAT/enhancer-binding protein ß (C/EBPß) is a transcription factor that is involved in adipocytic and monocytic differentiation. However, the physiological role of C/EBPß in megakaryocytes (MKs) is not clear. In this study, we investigated the effects of C/EBPß on the early-stage differentiation of MKs, and explored the potential mechanisms of action. We established a cytosine arabinoside-induced thrombocytopenia mouse model using C57BL/6 mice. In the thrombocytopenia mice, the platelet count was found to be decreased, and the mRNA and protein expression levels of C/EBPß in MKs were also reduced. Furthermore, the maturation of Dami (MKs cell line) cells was induced by phorbol 12-myristate 13-acetate. When C/EBPß was silenced in Dami cells by transfection using C/EBPß-small interfering RNA, the expression of MKs-specific markers CD41 and CD62P, was dramatically decreased, resulting in morphological changes and differentiation retardation in low ploidy, which were evaluated using flow cytometry, real-time polymerase chain reaction, western blot, and confocal microscopy. The mitogen activated protein kinase-extracellular signal-regulated kinase signaling pathway was found to be required for the differentiation of MKs; knockdown of C/EBPß in MEK/ERK1/2 pathway attenuated MKs differentiation. Overexpression of C/EBPß in MEK/ERK1/2 pathway inhibited by U0126 did not promote MKs differentiation. To the best of our knowledge, C/EBPß plays an important role in MKs differentiation and polyploidy cell cycle control. Taken together, C/EBPß may have thrombopoietic effects in the differentiation of MKs, and may assist in the development of treatments for various disorders.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Megacariocitos/citología , Trombopoyesis , Animales , Proteína beta Potenciadora de Unión a CCAAT/deficiencia , Proteína beta Potenciadora de Unión a CCAAT/genética , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factores de Tiempo
9.
Reprod Biomed Online ; 42(4): 826-834, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33637418

RESUMEN

RESEARCH QUESTION: Do platelets aggregate in adenomyotic lesions and participate in adenomyosis pathogenesis and related fibrosis? DESIGN: Eutopic and ectopic endometrium from 17 patients with adenomyosis and endometrium from 23 healthy controls were collected. Immunohistochemical analyses of platelet marker CD41, transforming growth factor beta 1 (TGF-ß1) and vascular endothelial growth factor (VEGF) were performed to investigate aggregation and activation of platelets in the stroma. Picrosirius staining was carried out to evaluate the extent of fibrotic tissue. RESULTS: Stroma in the control group showed higher CD41 staining levels than ectopic stroma from patients with adenomyosis (P < 0.001). In patients with adenomyosis, eutopic stroma expressed more extensive CD41 staining than ectopic stroma (P < 0.0001). Stroma in the control group exhibited higher TGF-ß1 expression than eutopic and ectopic stroma from adenomyosis patients (P = 0.009 and P < 0.0001). Stroma in the control group also expressed higher VEGF levels than ectopic stroma from patients with adenomyosis (P < 0.001). In patients with adenomyosis, eutopic stroma showed higher VEGF expression than ectopic stroma (P = 0.021). Stroma in ectopic endometrium from adenomyosis patients displayed greater Picrosirius staining compared with both eutopic stroma from adenomyosis patients and stroma in the control group (P < 0.0001). CONCLUSION: The results of this study did not detect a primary role for platelet activation or aggregation in the pathophysiological process of adenomyosis. Higher rates of collagen fibres were found in adenomyotic lesions, likely to be related to a TGF-ß1-independent pathway. Collagen fibre deposition was more extensive in adenomyotic lesions, consistent with fibrosis.


Asunto(s)
Adenomiosis/etiología , Endometrio/patología , Activación Plaquetaria , Agregación Plaquetaria , Adenomiosis/patología , Adulto , Estudios de Casos y Controles , Endometrio/metabolismo , Femenino , Fibrosis , Humanos , Persona de Mediana Edad , Adulto Joven
10.
Biochem Biophys Res Commun ; 528(1): 46-53, 2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32456797

RESUMEN

GATA1 is a master transcription factor of megakaryopoiesis and erythropoiesis, and loss-of-function mutation can induce accumulation of megakaryocyte-erythroid progenitors (MEPs) in mice and humans. Accordingly, the murine MEP cell line (termed G1ME2 cells) encoding doxycycline (dox)-inducible anti-Gata1 shRNA on Hprt locus has been developed. The cells were CD41+CD71+KIT+, expand under dox, stem cell factor, and thrombopoietin (TPO), and terminally differentiate into erythroid cells or megakaryocytes upon removal of dox. Surprisingly, in this study, these Gata1low murine MEPs displayed accelerated growth from around 90-100 days after cell culture, impeded megakaryocytic potential, and maintained erythropoiesis. We specified them as late G1ME2 cells and discovered that increased CD41-KIT+ population during long-term culture was the main reason for the delayed megakaryopoiesis. The CD41 expression level was partially de-repressed by PI3K/AKT inhibitors, suggesting that TPO-mediated cell survival signaling pathway might have impacted on CD41 in the late G1ME2 cells. Nevertheless, among the late cells, the CD41+KIT+ cells could still generate megakaryocytes on dox withdrawal. Taken together, G1ME2 cells could provide a good model to study molecular mechanism of hematopoiesis because of their ability to expand excessively without artificial immortalization.


Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA1/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos/citología , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Células Cultivadas , Ratones , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Transducción de Señal
11.
Biochem Biophys Res Commun ; 505(1): 168-175, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30243726

RESUMEN

Megakaryocytopoiesis results in the formation of platelets, which are essential for hemostasis. Decreased production or increased destruction of platelets can cause thrombocytopenia, in which platelet transfusion is the mode of treatment. The present study is aimed in generation of megakaryocytes (MKs) and platelet from human hematopoietic stem cells (HSCs). The purity of HSCs was assessed through Flow cytometry and immunocytochemistry (ICC) studies. These pure HSCs were induced with thrombopoietin (TPO), similarly with Andrographis paniculata extract (APE) for 21 days to generate MKs. The APE is mainly composed of andrographolide which stimulates TPO from the liver, and this binds to CD110 present on the surface of HSCs and triggers the proliferation of HSCs and initiate higher MKs population subsequently, a large number of platelets. The results of the present study showed increased proliferation of HSCs grown in the presence of APE and revealed a high population of CD41a and CD42b positive MKs as enumerated by Flow cytometry compared with TPO induced MKs. These results also concurred with qRT-PCR and western blot analysis. The scanning electron microscopy (SEM) revealed the morphology of differentiated MKs and platelets were similar to human blood platelets. The differentiated MKs in APE exhibited polyploidy up to 32 N while TPO induced MKs showed polyploidy of 8 N, these results corroborated with colony forming unit assay. On thrombin stimulation, high expression of P-selectin (CD62p) and fibrinogen binding were detected in APE induced platelets. Autologous transplantation of platelets generated from APE may be a useful option in thrombocytopenia condition.


Asunto(s)
Plaquetas/citología , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Megacariocitos/citología , Andrographis paniculata , Células Cultivadas , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Humanos , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Microscopía Electrónica de Rastreo , Extractos Vegetales/farmacología , Trombopoyesis/efectos de los fármacos , Trombopoyesis/genética , Trombopoyetina/farmacología
12.
Development ; 141(17): 3319-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25139854

RESUMEN

Haematopoiesis in adult animals is maintained by haematopoietic stem cells (HSCs), which self-renew and can give rise to all blood cell lineages. The AGM region is an important intra-embryonic site of HSC development and a wealth of evidence indicates that HSCs emerge from the endothelium of the embryonic dorsal aorta and extra-embryonic large arteries. This, however, is a stepwise process that occurs through sequential upregulation of CD41 and CD45 followed by emergence of fully functional definitive HSCs. Although largely dispensable at later stages, the Runx1 transcription factor is crucially important during developmental maturation of HSCs; however, exact points of crucial involvement of Runx1 in this multi-step developmental maturation process remain unclear. Here, we have investigated requirements for Runx1 using a conditional reversible knockout strategy. We report that Runx1 deficiency does not preclude formation of VE-cad+CD45-CD41+ cells, which are phenotypically equivalent to precursors of definitive HSCs (pre-HSC Type I) but blocks transition to the subsequent CD45+ stage (pre-HSC Type II). These data emphasise that developmental progression of HSCs during a very short period of time is regulated by precise stage-specific molecular mechanisms.


Asunto(s)
Linaje de la Célula , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos/citología , Células Madre Hematopoyéticas/citología , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Células Madre Hematopoyéticas/metabolismo , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Stem Cells ; 34(12): 2814-2824, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27340788

RESUMEN

Hemogenic endothelial cells (HECs) are considered to be the origin of hematopoietic stem cells (HSCs). HECs have been identified in differentiating mouse embryonic stem cells (ESCs) as VE-cadherin+ cells with both hematopoietic and endothelial potential in single cells. Although the bipotential state of HECs is a key to cell fate decision toward HSCs, the molecular basis of the regulation of the bipotential state has not been well understood. Here, we report that the CD41+ fraction of CD45- CD31+ VE-cadherin+ endothelial cells (ECs) from mouse ESCs encompasses an enriched HEC population. The CD41+ ECs expressed Runx1, Tal1, Etv2, and Sox17, and contained progenitors for both ECs and hematopoietic cells (HCs) at a high frequency. Clonal analyses of cell differentiation confirmed that one out of five HC progenitors in the CD41+ ECs possessed the bipotential state that led also to EC colony formation. A phenotypically identical cell population was found in mouse embryos, although the potential was more biased to hematopoietic fate with rare bipotential progenitors. ESC-derived bipotential HECs were further enriched in the CD41+ CXCR4+ subpopulation. Stimulation with CXCL12 during the generation of VE-cadherin+ CXCR4+ cells attenuated the EC colony-forming ability, thereby resulted in a decrease of bipotential progenitors in the CD41+ CXCR4+ subpopulation. Our results suggest that CXCL12/CXCR4 signaling negatively modulates the bipotential state of HECs independently of the hematopoietic fate. Identification of signaling molecules controlling the bipotential state is crucial to modulate the HEC differentiation and to induce HSCs from ESCs. Stem Cells 2016;34:2814-2824.


Asunto(s)
Células Endoteliales/metabolismo , Hemangioblastos/citología , Hemangioblastos/metabolismo , Células Madre Embrionarias de Ratones/citología , Receptores CXCR4/metabolismo , Transducción de Señal , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Células Endoteliales/citología , Hematopoyesis , Ratones , Ratones Endogámicos ICR , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo
14.
Fish Shellfish Immunol ; 64: 146-154, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28254500

RESUMEN

CD4+ helper T (Th) cells are a master component of the adaptive immune response. CD4 is one of the most effective surface markers for identifying Th cells. In the present study, we cloned and characterized a CD4-1 homologue, LycCD4-1, from large yellow croaker Larimichthys crocea. The full-length cDNA of LycCD4-1 is 1695 bp long, encoding a protein of 462 amino acids. The deduced LycCD4-1 protein has a typical domain architecture as found in mammalian CD4 molecules, including a signal peptide, four extracellular immunoglobulin-like (Ig-like) domains, a transmembrane region, and a CXC signaling motif in the cytoplasmic tail. Four N-glycosylation sites and 10 cysteine residues were also found in LycCD4-1, which may be essential for its tertiary structure and succeeding function. Homology comparison showed that LycCD4-1 has 27.9-58.4% identity to other teleost fish CD4-1 molecules, and 16.4-20% identity to those of higher vertebrates. Genomic analysis revealed that the LycCD4-1 gene consisted of nine exons and eight introns and exhibited a similar exon-intron organization to other species CD4 genes except for a different intron length. Phylogenetic analysis showed that LycCD4-1 form a cluster with CD4-1 molecules in other fish species. The LycCD4-1 was constitutively expressed in all tissues tested, with a higher expression in gills and spleen. LycCD4-1 mRNA expression in the spleen and head kidney tissue was increased by poly (I:C) at 48 h, whereas its expression levels were somewhat down-regulated at 6 h and 72 h after bacterial vaccine induction in spleen. Unexpectedly, LycCD4-1 mRNA could be detected in each stage of early embryo development since fertilized eggs, with a higher level before mid-gastrula and the highest level in high blastocysts. These results will be helpful for better understanding molecular characteristics of CD4-1 and tracing origin of CD4-1+ cell precursors in fish.


Asunto(s)
Antígenos CD4/genética , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Perciformes/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Antígenos CD4/química , Antígenos CD4/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Embrión no Mamífero/inmunología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Perciformes/embriología , Perciformes/inmunología , Perciformes/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia/veterinaria , Distribución Tisular
15.
Platelets ; 28(3): 263-271, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28102751

RESUMEN

Cells release membrane vesicles in their surrounding medium either constitutively or in response to activating signals. Two main types of extracellular vesicles (EVs) are commonly distinguished based on their mechanism of formation, membrane composition and size. According to the current model, EVs shed from the plasma membrane, often called microvesicles, expose phosphatidylserine (PS) and range in size from 100 nm to 1 µm, while EVs originating from endosomal multi-vesicular bodies, called exosomes, contain tetraspanin proteins, including CD63, and range in size from 50 to 100 nm. Heijnen et al. [1] have shown that activated platelets release EVs corresponding to these two types of vesicles, using negative staining electron microscopy (EM) and immuno-gold labeling. Here, we apply cryo-EM and immuno-gold labeling to provide a quantitative analysis of EVs released by platelets activated by thrombin, TRAP and CRP-XL, as well as EVs from serum. We show that EVs activated by these three agonists present a similar size distribution, the majority of them forming a broad peak extending from 50 nm to 1 µm, about 50% of them ranging from 50 to 400 nm. We show also that 60% of the EVs from TRAP or CRP-XL activation expose CD41, a majority of them exposing also PS. To explain the presence of large EVs CD41-negative or PS-negative, several alternative mechanisms of EV formation are proposed. We find also that the majority of EVs in activated platelet samples expose CD63, and distinguish two populations of CD63-positive EVs, namely large EVs with low labeling density and small EVs with high labeling density.


Asunto(s)
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Microscopía por Crioelectrón/métodos , Exosomas/metabolismo , Inmunohistoquímica/métodos , Coloración y Etiquetado/métodos , Biomarcadores/metabolismo , Plaquetas/citología , Plaquetas/efectos de los fármacos , Proteínas Portadoras/farmacología , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/clasificación , Exosomas/química , Exosomas/clasificación , Humanos , Tamaño de la Partícula , Péptidos/farmacología , Fosfatidilserinas/metabolismo , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/fisiología , Receptores de Trombina/química , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo , Trombina/farmacología
16.
Sleep Breath ; 21(3): 595-600, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28130736

RESUMEN

PURPOSE: Microvesicles (MVs) have been implicated in the pathomechanism of obstructive sleep apnoea (OSA); however, the results are inconsistent, possibly due to an unrevealed temporal variation in circulating MV levels. We aimed to investigate the diurnal changes of MV fractions in OSA. METHODS: Peripheral blood was taken from 18 patients with OSA and 9 healthy subjects at different time points (11:00, 17:00, 21:00, 01:30 and 06:00). Samplings were repeated in nine OSA patients after 2 months of continuous positive airway pressure (CPAP) therapy. CD41+, CD62P+, glycophorin A+ and Annexin V+ MVs were determined with flow cytometry. Areas under the MV concentrations-time curves (AUC) were calculated and correlated with the severity of OSA. RESULTS: A significant diurnal variability of plasma CD41+ and Annexin V+ MVs was observed only in OSA with a marked peak at 17:00. There was a direct correlation between CD41+ MV AUCs and the severity of OSA. CPAP treatment reduced diurnal variability in both CD41+ and Annexin V+ MV levels. CONCLUSIONS: The relationship between the diurnal variability of CD41+ MVs and disease severity as well as the effect of CPAP treatment on MV levels support the role of MVs in the pathophysiology of OSA. More importantly, considering the significant diurnal variation in circulating MV levels, introduction of strict protocols for blood sampling is required for MV measurements.


Asunto(s)
Micropartículas Derivadas de Células , Ritmo Circadiano/fisiología , Apnea Obstructiva del Sueño/sangre , Apnea Obstructiva del Sueño/fisiopatología , Adulto , Presión de las Vías Aéreas Positiva Contínua , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polisomnografía
17.
Stem Cells ; 33(3): 976-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25446279

RESUMEN

Previous studies have predicted that reciprocal activation of GATA-1 and PU.1 regulates myelo-erythroid versus myelo-lymphoid lineage commitment in early hematopoiesis. Such PU.1-activating myelo-lymphoid progenitors exist within the lymphoid-primed multipotent progenitor (LMPP) population at the primitive Lineage(-) Sca-1(+) c-Kit(+) (LSK) stage. We here show that the counterpart of GATA-1-activating myelo-erythroid progenitor resides also at the LSK stage, expressing CD41 at a high level. Purified CD41(hi) LSK cells showed exceedingly strong and prolonged myelo-erythroid-restricted reconstitution, and primed myelo-erythroid gene expression with a more primitive molecular signature as compared to the original common myeloid progenitor (CMP). The CD41(hi) LSK cells more strongly contributed to emergent and malignant myelopoiesis than LMPPs, and produced the original CMP by downregulating Sca-1 and CD41, suggesting that they are the earliest CMPs. Thus, the hematopoietic developmental map should be revised by integrating the primary branchpoint comprised of the new, isolatable CD41(hi) CMP and the LMPP populations.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Leucemia Mieloide/patología , Células Progenitoras Mieloides/citología , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Células Cultivadas , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Progenitoras Mieloides/metabolismo
18.
Eur J Immunol ; 44(6): 1823-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24610714

RESUMEN

Basophils, a rare leukocyte population in peripheral circulation, are conventionally identified as CD45(int) CD49b(+) FcεRI(+) cells. Here, we show that basophils from blood and several organs of naïve wild-type mice express CD41, the α subunit of α(IIb)ß3 integrin. CD41 expression on basophils is upregulated after in vivo IL-3 treatment and during infection with Nippostrongylus brasiliensis (Nb). Moreover, CD41 can be used as a reliable marker for basophils, circumventing technical difficulties associated with FcεRI for basophil identification in a Nb infection model. In vitro anti-IgE cross-linking and IL-3 basophil stimulation showed that CD41 upregulation positively correlates with augmented surface expression of CD200R and increased production of IL-4/IL-13, indicating that CD41 is a basophil activation marker. Furthermore, we found that infection with Plasmodium yoelii 17X (Py17x) induced a profound basophilia and using Mcpt8(DTR) reporter mice as a basophil-specific depletion model, we verified that CD41 can be used as a marker to track basophils in the steady state and during infection. During malarial infection, CD41 expression on basophils is negatively regulated by IFN-γ and positively correlates with increased basophil IL-4 production. In conclusion, we provide evidence that CD41 can be used as both an identification and activation marker for basophils during homeostasis and immune challenge.


Asunto(s)
Basófilos/inmunología , Malaria/inmunología , Nippostrongylus/inmunología , Plasmodium yoelii/inmunología , Glicoproteína IIb de Membrana Plaquetaria/inmunología , Infecciones por Strongylida/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Basófilos/patología , Femenino , Inmunoglobulina E/inmunología , Interleucina-3/inmunología , Interleucina-4/inmunología , Malaria/patología , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Infecciones por Strongylida/patología
19.
Front Vet Sci ; 11: 1393977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799726

RESUMEN

In human medicine, various pathologies, including decompression sickness, thrombocytopenia, and rheumatoid arthritis, have been linked to changes in cellular microparticles (MP) formation, particularly platelet microparticles (PMP). Similar disorders in marine mammals might be attributed to anthropogenic threats or illnesses, potentially impacting blood PMP levels. Thus, detecting platelet phosphatidylserine (PS) exposure and PMP formation could serve as a crucial diagnostic and monitoring approach for these conditions in marine mammals. Our group has developed a methodology to assess real-time PS exposure and PMP formation specifically tailored for marine mammals. This method, pioneered in species such as bottlenose dolphins, beluga whales, walruses, and California sea lions, represents a novel approach with significant implications for both clinical assessment and further research into platelet function in these animals. The adapted methodology for evaluating PS exposure and PMP formation in marine mammals has yielded promising results. By applying this approach, we have observed significant correlations between alterations in PMP levels and specific pathologies or environmental factors. These findings underscore the potential of platelet function assessment as a diagnostic and monitoring tool in marine mammal health. The successful adaptation and application of this methodology in marine mammals highlight its utility for understanding and managing health concerns in these animals.

20.
Ann Lab Med ; 44(5): 392-400, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469637

RESUMEN

Background: Coronavirus disease (COVID-19) induces inflammation, coagulopathy following platelet and monocyte activation, and fibrinolysis, resulting in elevated D-dimer levels. Activated platelets and monocytes produce microvesicles (MVs). We analyzed the differences in platelet and monocyte MV counts in mild, moderate, and severe COVID-19, as well as their correlation with D-dimer levels. Methods: In this cross-sectional study, blood specimens were collected from 90 COVID-19 patients and analyzed for D-dimers using SYSMEX CS-2500. Platelet MVs (PMVs; PMVCD42b+ and PMVCD41a+), monocyte MVs (MMVs; MMVCD14+), and phosphatidylserine-binding annexin V (PS, AnnV+) were analyzed using a BD FACSCalibur instrument. Results: PMV and MMV counts were significantly increased in COVID-19 patients. AnnV+ PMVCD42b+ and AnnV+ PMVCD41a+ cell counts were higher in patients with severe COVID-19 than in those with moderate clinical symptoms. The median (range) of AnnV+ PMVCD42b+ (MV/µL) in mild, moderate, and severe COVID-19 was 1,118.3 (328.1-1,910.5), 937.4 (311.4-2,909.5), and 1,298.8 (458.2-9,703.5), respectively (P =0.009). The median (range) for AnnV+ PMVCD41a+ (MV/µL) in mild, moderate, and severe disease was 885.5 (346.3-1,682.7), 663.5 (233.8-2,081.5), and 1,146.3 (333.3-10,296.6), respectively (P =0.007). D-dimer levels (ng/mL) weak correlated with AnnV+ PMVCD41a+ (P =0.047, r=0.258). Conclusions: PMV PMVCD42b+ and PMVCD41a+ counts were significantly increased in patients with severe clinical symptoms, and PMVCD41a+ counts correlated with D-dimer levels. Therefore, MV counts can be used as a potential biomarker of COVID-19 severity.


Asunto(s)
Biomarcadores , Plaquetas , COVID-19 , Micropartículas Derivadas de Células , Productos de Degradación de Fibrina-Fibrinógeno , Monocitos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/patología , Estudios Transversales , Monocitos/metabolismo , Monocitos/citología , Femenino , Masculino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Persona de Mediana Edad , Biomarcadores/sangre , Plaquetas/metabolismo , Plaquetas/patología , Plaquetas/citología , SARS-CoV-2/aislamiento & purificación , Anciano , Adulto , Micropartículas Derivadas de Células/metabolismo , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/sangre , Neumonía Viral/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/virología , Betacoronavirus/aislamiento & purificación , Anciano de 80 o más Años
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA