Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730851

RESUMEN

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Asunto(s)
Biodiversidad , Plancton/fisiología , Agua de Mar/microbiología , Geografía , Modelos Teóricos , Océanos y Mares , Filogenia
2.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857391

RESUMEN

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Asunto(s)
Biomasa , Ecosistema , Hielos Perennes , Tibet , Humedales , Plantas/metabolismo , Cambio Climático , Temperatura , Ciclo del Carbono , Desarrollo de la Planta/fisiología , Suelo/química , Pradera
3.
Proc Natl Acad Sci U S A ; 120(4): e2120869120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656855

RESUMEN

Observed range shifts of numerous species support predictions of climate change models that species will shift their distribution northward into the Arctic and sub-Arctic seas due to ocean warming. However, how this is affecting overall species richness is unclear. Here we analyze 20,670 scientific research trawls from the North Sea to the Arctic Ocean collected from 1994 to 2020, including 193 fish species. We found that demersal fish species richness at the local scale has doubled in some Arctic regions, including the Barents Sea, and increased at a lower rate at adjacent regions in the last three decades, followed by an increase in species richness and turnover at a regional scale. These changes in biodiversity correlated with an increase in sea bottom temperature. Within the study area, Arctic species' probability of occurrence generally declined over time. However, the increase in species from southern latitudes, together with an increase in some Arctic species, ultimately led to an enrichment of the Arctic and sub-Arctic marine fauna due to increasing water temperature consistent with climate change.


Asunto(s)
Biodiversidad , Peces , Animales , Regiones Árticas , Océanos y Mares , Temperatura , Cambio Climático , Ecosistema , Océano Atlántico
4.
Proc Natl Acad Sci U S A ; 119(14): e2111372119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344431

RESUMEN

SignificanceRecord-setting fires in the western United States over the last decade caused severe air pollution, loss of human life, and property damage. Enhanced drought and increased biomass in a warmer climate may fuel larger and more frequent wildfires in the coming decades. Applying an empirical statistical model to fires projected by Earth System Models including climate-ecosystem-socioeconomic interactions, we show that fine particulate pollution over the US Pacific Northwest could double to triple during late summer to fall by the late 21st century under intermediate- and low-mitigation scenarios. The historic fires and resulting pollution extremes of 2017-2020 could occur every 3 to 5 y under 21st-century climate change, posing challenges for air quality management and threatening public health.


Asunto(s)
Contaminación del Aire , Incendios , Incendios Forestales , Contaminación del Aire/análisis , Cambio Climático , Ecosistema , Humanos , Minerales , Salud Pública , Estados Unidos
5.
BMC Plant Biol ; 24(1): 228, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561665

RESUMEN

BACKGROUND: Together with other elevated areas, the Mountains of Central Asia are significantly threatened by ongoing climate change. The presence of refuges during the glaciations makes the region extremely rich in species, especially endemic ones. However, the limited potential for colonisation of other habitats makes rocky-related species with 'island-like' distribution, particularly vulnerable to climate change. To understand the processes underlying species response to climate warming, we assessed differences in ecological niches and phylogenetic relationship of two geographically disjunctive alpine species belonging to the genus Sergia. The taxa are considered Tertiary relicts, endemic to the Tian Shan and Pamir-Alai Mountains. To illustrate range dynamics and differences in occupied niches of Sergia species, we used Ecological Niche Modelling of current and future distribution. Whereas, to reconstruct the phylogenetic relationship within and between Sergia and other related Campanulaceae species from the region we used molecular data (ITS, cpDNA, DArTseq-derived SNPs). RESULTS: The results reveal that the genus Sergia is a polyphyletic group, and its representatives differ geographically, ecologically and genetically. Both S. regelii and S. sewerzowii constitute a common clade with Asyneuma group, however, S. sewerzowii is more closely related to Campanula alberti (a species that has never previously been considered closely related to the genus Asyneuma or Sergia) than to S. regelii. Sergia sewerzowii is adapted to lower elevations with higher temperatures, while S. regelii prefers higher elevations with lower temperatures. The future distribution models demonstrate a dramatic loss of S. regelii range with a shift to suitable habitats in higher elevations, while the potential range of S. sewerzowii increases and shifts to the north. CONCLUSIONS: This study shows that S. regelii and S. sewerzowii have a long and independent evolution history. Sergia regelii and S. sewerzowii significantly differ in realised niches. These differences are mirrored in the response of the studied endemics to future climate warming. As suitable habitats shrink, rapid changes in distribution can lead to species' range loss, which is also directly related to declines in genetic variability. The outcomes of this paper will help to more precisely assess the impact of climate changes on rocky-related plant species found in this world's biodiversity hotspot.


Asunto(s)
Campanulaceae , Cambio Climático , Filogenia , Biodiversidad , Ecosistema , Campanulaceae/genética , Asia
6.
Proc Biol Sci ; 291(2016): 20232361, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351802

RESUMEN

Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.


Asunto(s)
Arvicolinae , Ecosistema , Animales , Dinámica Poblacional , Estaciones del Año , Cadena Alimentaria , Regiones Árticas
7.
Appl Environ Microbiol ; 90(6): e0000124, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38771056

RESUMEN

Global change factors are known to strongly affect soil microbial community function and composition. However, as of yet, the effects of warming and increased anthropogenic nitrogen deposition on soil microbial network complexity and stability are still unclear. Here, we examined the effects of experimental warming (3°C above ambient soil temperature) and nitrogen addition (5 g N m-2 year-1) on the complexity and stability of the soil microbial network in a subtropical primary forest. Compared to the control, warming increased |negative cohesion|:positive cohesion by 7% and decreased network vulnerability by 5%; nitrogen addition decreased |negative cohesion|:positive cohesion by 10% and increased network vulnerability by 11%. Warming and decreased soil moisture acted as strong filtering factors that led to higher bacterial network stability. Nitrogen addition reduced bacterial network stability by inhibiting soil respiration and increasing resource availability. Neither warming nor nitrogen addition changed fungal network complexity and stability. These findings suggest that the fungal community is more tolerant than the bacterial community to climate warming and nitrogen addition. The link between bacterial network stability and microbial community functional potential was significantly impacted by nitrogen addition and warming, while the response of soil microbial network stability to climate warming and nitrogen deposition may be independent of its complexity. Our findings demonstrate that changes in microbial network structure are crucial to ecosystem management and to predict the ecological consequences of global change in the future. IMPORTANCE: Soil microbes play a very important role in maintaining the function and health of forest ecosystems. Unfortunately, global change factors are profoundly affecting soil microbial structure and function. In this study, we found that climate warming promoted bacterial network stability and nitrogen deposition decreased bacterial network stability. Changes in bacterial network stability had strong effects on bacterial community functional potentials linked to metabolism, nitrogen cycling, and carbon cycling, which would change the biogeochemical cycle in primary forests.


Asunto(s)
Bacterias , Bosques , Hongos , Microbiota , Nitrógeno , Microbiología del Suelo , Nitrógeno/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Suelo/química , Calentamiento Global , Cambio Climático
8.
New Phytol ; 241(1): 131-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37525059

RESUMEN

Many plant species are predicted to migrate poleward in response to climate change. Species distribution models (SDMs) have been widely used to quantify future suitable habitats, but they often neglect soil properties, despite the importance of soil for plant fitness. As soil properties often change along latitudinal gradients, higher-latitude soils might be more or less suitable than average conditions within the current ranges of species, thereby accelerating or slowing potential poleward migration. In this study, we built three SDMs - one with only climate predictors, one with only soil predictors, and one with both - for each of 1870 plant species in Eastern North America, in order to investigate the relative importance of soil properties in determining plant distributions and poleward shifts under climate change. While climate variables were the most important predictors, soil properties also had a substantial influence on continental-scale plant distributions. Under future climate scenarios, models including soil predicted much smaller northward shifts in distributions than climate-only models (c. 40% reduction). Our findings strongly suggest that high-latitude soils are likely to impede ongoing plant migration, and they highlight the necessity of incorporating soil properties into models and predictions for plant distributions and migration under environmental change.


Asunto(s)
Cambio Climático , Suelo , Ecosistema , Plantas , Dispersión de las Plantas
9.
New Phytol ; 243(1): 82-97, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666344

RESUMEN

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.


Asunto(s)
Cambio Climático , Eucalyptus , Hojas de la Planta , Especificidad de la Especie , Eucalyptus/fisiología , Eucalyptus/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Temperatura , Plantones/crecimiento & desarrollo , Plantones/fisiología , Aclimatación/fisiología , Australia , Geografía
10.
Plant Cell Environ ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935880

RESUMEN

Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.

11.
Glob Chang Biol ; 30(1): e17016, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921358

RESUMEN

Carbon allocation has been fundamental for long-lived trees to survive cold stress at their upper elevation range limit. Although carbon allocation between non-structural carbohydrate (NSC) storage and structural growth is well-documented, it still remains unclear how ongoing climate warming influences these processes, particularly whether these two processes will shift in parallel or respond divergently to warming. Using a combination of an in situ downward-transplant warming experiment and an ex situ chamber warming treatment, we investigated how subalpine fir trees at their upper elevation limit coordinated carbon allocation priority among different sinks (e.g., NSC storage and structural growth) at whole-tree level in response to elevated temperature. We found that transplanted individuals from the upper elevation limit to lower elevations generally induced an increase in specific leaf area, but there was no detected evidence of warming effect on leaf-level saturated photosynthetic rates. Additionally, our results challenged the expectation that climate warming will accelerate structural carbon accumulation while maintaining NSC constant. Instead, individuals favored allocating available carbon to NSC storage over structural growth after 1 year of warming, despite the amplification in total biomass encouraged by both in situ and ex situ experimental warming. Unexpectedly, continued warming drove a regime shift in carbon allocation priority, which was manifested in the increase of NSC storage in synchrony to structural growth enhancement. These findings imply that climate warming would release trees at their cold edge from C-conservative allocation strategy of storage over structural growth. Thus, understanding the strategical regulation of the carbon allocation priority and the distinctive function of carbon sink components is of great implication for predicting tree fate in the future climate warming.


Asunto(s)
Abies , Árboles , Humanos , Clima , Fotosíntesis , Carbono
12.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853470

RESUMEN

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Asunto(s)
Artrópodos , Biomasa , Estaciones del Año , Temperatura , Animales , Regiones Árticas , Artrópodos/fisiología , Cambio Climático , Cadena Alimentaria , Charadriiformes/fisiología , Migración Animal
13.
Glob Chang Biol ; 30(1): e17040, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273522

RESUMEN

Climate change is predicted to cause milder winters and thus exacerbate soil freeze-thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze-thaw events. After one season of winter warming, which raised mean surface and soil (-8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming-induced increase in frost cycles improved soil microbial resilience to an experimental freeze-thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze-thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon-use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial-mediated biogeochemical cycles.


Asunto(s)
Resiliencia Psicológica , Microbiología del Suelo , Estaciones del Año , Suelo/química , Carbono , Cambio Climático
14.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273515

RESUMEN

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Asunto(s)
Fagus , Picea , Pinus sylvestris , Quercus , Árboles , Bosques , Picea/fisiología , Noruega , Cambio Climático
15.
J Exp Biol ; 227(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38904077

RESUMEN

Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.


Asunto(s)
Aclimatación , Branquias , Procesos Estocásticos , Animales , Branquias/fisiología , Aclimatación/fisiología , Ciprinodontiformes/fisiología , Temperatura , Cambio Climático , Organismos Hermafroditas/fisiología , Calor
16.
J Anim Ecol ; 93(4): 428-446, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38406823

RESUMEN

Dispersal is a crucial component of species' responses to climate warming. Warming-induced changes in species' distributions are the outcome of how temperature affects dispersal at the individual level. Yet, there is little or no theory that considers the temperature dependence of dispersal when investigating the impacts of warming on species' distributions. Here I take a first step towards filling this key gap in our knowledge. I focus on ectotherms, species whose body temperature depends on the environmental temperature, not least because they constitute the majority of biodiversity on the planet. I develop a mathematical model of spatial population dynamics that explicitly incorporates mechanistic descriptions of ectotherm life history trait responses to temperature. A novel feature of this framework is the explicit temperature dependence of all phases of dispersal: emigration, transfer and settlement. I report three key findings. First, dispersal, regardless of whether it is random or temperature-dependent, allows both tropical and temperate ectotherms to track warming-induced changes in their thermal environments and to expand their distributions beyond the lower and upper thermal limits of their respective climate envelopes. In the absence of dispersal mortality, warming does not alter these new distributional limits. Second, an analysis based solely on trait response data predicts that tropical ectotherms should be able to expand their distributions polewards to a greater degree than temperate ectotherms. Analysis of the dynamical model confirms this prediction. Tropical ectotherms have an advantage when moving to cooler climates because they experience lower within-patch and dispersal mortality, and their higher thermal optima and maximal birth rates allow them to take advantage of the warmer parts of the year. Previous theory has shown that tropical ectotherms are more successful in invading and adapting the temperate climates than vice versa. This study provides the key missing piece, by showing how temperature-dependent dispersal could facilitate both invasion and adaptation. Third, dispersal mortality does not affect the poleward expansion of ectotherm distributions. But, it prevents both tropical and temperate ectotherms from maintaining sink populations in localities that are too warm to be viable in the absence of dispersal. Dispersal mortality also affects species' abundance patterns, causing a larger decline in abundance throughout the range when species disperse randomly rather than in response to thermal habitat suitability. In this way, dispersal mortality can facilitate the evolution of dispersal modes that maximize fitness in warmer thermal environments.


Asunto(s)
Clima , Ecosistema , Animales , Temperatura , Cambio Climático , Biodiversidad
17.
Microb Ecol ; 87(1): 59, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619730

RESUMEN

As one of the important biodiversity conservation areas in China, the ecosystem in the lower reaches of the Yarlung Zangbo River is fragile, and is particularly sensitive to global changes. To reveal the diversity pattern of phytoplankton, the metabarcode sequencing was employed in the Medog section of the lower reaches of the Yarlung Zangbo River during autumn 2019 in present study. The phytoplankton assemblies can be significantly divided into the main stem and the tributaries; there are significant differences in the phytoplankton biomass, alpha and beta diversity between the main stem and the tributaries. While both the main stem and the tributaries are affected by dispersal limitation, the phytoplankton assemblages in the entire lower reaches are primarily influenced by heterogeneous selection. Community dissimilarity and assembly process were significantly correlated with turbidity, electrical conductivity, and nitrogen nutrition. The tributaries were the main source of the increase in phytoplankton diversity in the lower reaches of the Yarlung Zangbo River. Such diversity pattern of phytoplankton in the lower reach may be caused by the special habitat in Medog, that is, the excessive flow velocity, and the significant spatial heterogeneity in physical and chemical factors between stem and tributaries. Based on the results and conclusions obtained in present study, continuous long-term monitoring is essential to assess and quantify the impact of global changes on phytoplankton.


Asunto(s)
Ecosistema , Ríos , Biodiversidad , Biomasa , Fitoplancton
18.
Conserv Biol ; : e14291, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745485

RESUMEN

Globally, marine fish communities are being altered by climate change and human disturbances. We examined data on global marine fish communities to assess changes in community-weighted mean temperature affinity (i.e., mean temperatures within geographic ranges), maximum length, and trophic levels, which, respectively, represent the physiological, morphological, and trophic characteristics of marine fish communities. Then, we explored the influence of climate change and fishing on these characteristics because of their long-term role in shaping fish communities, especially their interactive effects. We employed spatial linear mixed models to investigate their impacts on community-weighted mean trait values and on abundance of different fish lengths and trophic groups. Globally, we observed an initial increasing trend in the temperature affinity of marine fish communities, whereas the weighted mean length and trophic levels of fish communities showed a declining trend. However, these shift trends were not significant, likely due to the large variation in midlatitude communities. Fishing pressure increased fish communities' temperature affinity in regions experiencing climate warming. Furthermore, climate warming was associated with an increase in weighted mean length and trophic levels of fish communities. Low climate baseline temperature appeared to mitigate the effect of climate warming on temperature affinity and trophic levels. The effect of climate warming on the relative abundance of different trophic classes and size classes both exhibited a nonlinear pattern. The small and relatively large fish species may benefit from climate warming, whereas the medium and largest size groups may be disadvantaged. Our results highlight the urgency of establishing stepping-stone marine protected areas to facilitate the migration of fishes to habitats in a warming ocean. Moreover, reducing human disturbance is crucial to mitigate rapid tropicalization, particularly in vulnerable temperate regions.


Análisis de la respuesta de las comunidades de peces marinos ante el cambio climático y la pesca Resumen Las comunidades de peces marinos sufren alteraciones en todo el mundo causadas por el cambio climático y las perturbaciones humanas. Analizamos los datos sobre las comunidades de peces marinos de todo el mundo para valorar los cambios en la afinidad térmica media (es decir, la temperatura media dentro de las distribuciones geográficas), la longitud máxima y los niveles tróficos, todos con ponderación comunitaria, los cuales representan respectivamente las características fisiológicas, morfológicas y tróficas de las comunidades de peces marinos. Después exploramos la influencia del cambio climático y la pesca sobre estos rasgos, ya que desempeñan un papel a largo plazo en la formación de las comunidades de peces, especialmente sus efectos interactivos. Empleamos modelos espaciales lineales mixtos para investigar el impacto del cambio climático y la pesca sobre los valores promedio de los rasgos con ponderación comunitaria y sobre la abundancia de las diferentes longitudes de peces y grupos tróficos. Observamos una tendencia inicial en incremento en la afinidad térmica de las comunidades de peces marinos en todo el mundo, mientras que el promedio con ponderación comunitaria de la longitud y el nivel trófico mostró una tendencia en declinación. Sin embargo, estos cambios en las tendencias no fueron significativas, probablemente debido a la gran variación de las comunidades de latitud media. La presión de pesca incrementó la afinidad térmica de las comunidades de peces en las regiones que experimentan el calentamiento climático. Además, este calentamiento estuvo asociado con un incremento en el promedio con ponderación comunitaria de la longitud y el nivel trófico de las comunidades. La temperatura de referencia climática baja pareció mitigar el efecto del calentamiento climático sobre la afinidad térmica y los niveles tróficos. El efecto del calentamiento sobre la abundancia relativa de las diferentes clases tróficas y el tamaño de las clases exhibió un patrón no lineal. Las especies de peces pequeños y relativamente grandes podrían beneficiarse con el calentamiento climático, mientras que los grupos de mayor tamaño y tamaño mediano estarían en desventaja. Nuestros resultados resaltan la urgencia por establecer áreas marinas protegidas que faciliten la migración de peces hacia hábitats en un océano cada vez más caliente. Además, es crucial reducir la perturbación humana para mitigar la rápida tropicalización, particularmente en las regiones templadas vulnerables.

19.
Conserv Biol ; 38(2): e14174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37650435

RESUMEN

Climate change is one of the major threats to coastal fish biodiversity, and optimization of no-take marine protected areas (MPAs) is imminent. We predicted fish redistribution under climate change in coastal China Seas with joint species distribution modeling and prioritized areas for conservation with Zonation, for which we used core area zonation (CAZ) and additive benefit function (ABF). Based on our results, we devised an expansion plan of no-take MPAs. Under climate change, fish were redistributed northward along the coast. These redistributions were segmented by the Yangtze River estuary and its adjacent waters, indicating a possible biogeographical barrier. Under CAZ and ABF, significantly more fish habitat was conserved than under random prioritization (p < 0.001, Cohen's d = -0.36 and -0.62, respectively). The ABF better represented areas with higher species richness, whereas CAZ better represented core habitats for species with narrow distributions. Without accounting for species redistribution, the expanded MPAs were mainly distributed in the northwest of the South China Sea, the East China Sea, the north of the Yellow Sea, and the west of the Bohai Sea. When accounting for species redistribution, the proposed MPAs were mainly distributed in the north of the Bohai Sea and southwest of the Yellow Sea, corresponding to the northern species redistributions. These MPAs conserved less habitat for fishes at present but protected more and better quality habitat for fishes in 2050 and 2100 than those MPAs that did not account for species redistribution, indicating improved fish conservation under climate change. Incorporating species redistribution and trade-offs between areas with high species richness and areas that contain habitats for rare species are suggested to address coastal fish conservation under climate change. This work provides valuable information for fish conservation and is a precursor to systematic conservation planning along the coastlines of China Seas.


Mejora de la eficiencia y la resiliencia de las áreas marinas protegidas con veda para la conservación de peces bajo el cambio climático en la costa de los mares de China Resumen El cambio climático es una de las principales amenazas para la biodiversidad de peces costeros, y la mejora de las área marinas protegidas (AMP) con vedas es inevitable. Pronosticamos la redistribución de los peces por el cambio climático en la costa de los mares de China con un modelo de distribución de especies y las áreas priorizadas para la conservación con Zonation, para el cual usamos zonación de las áreas núcleo (ZAN) y la función del beneficio aditivo. (FBA). Con base en nuestros resultados, diseñamos un plan de expansión de AMP con veda. Con el cambio climático, los peces se redistribuyeron hacia el norte a lo largo de la costa. Esta redistribución fue segmentada por el estuario del río Yangtze y las aguas vecinas, indicador de una posible barrera biogeográfica. Con la ZAN y la FBA, se conservó una cantidad significativa de peces en comparación con una priorización aleatoria (p < 0.001, d de Cohen = ­0.36 y ­0.62, respectivamente). La FBA representó de mejor manera las áreas con una riqueza de especies elevada, mientras que la ZAN representó de mejor manera los hábitats nucleares de las especies con una distribución reducida. Sin contar la redistribución de las especies, las AMP expandidas se localizaron principalmente en el noroeste del Mar del Sur de China, del Mar del Este de China, al norte del Mar Amarillo y al oeste del Mar Bohai. Cuando consideramos la redistribución de las especies, las AMP propuestas se localizaron principalmente al norte del Mar de Bohai y al suroeste del Mar Amarillo, lo que corresponde a la redistribución hacia el norte de las especies. Estas AMP conservaron un menor hábitat de los peces en el presente pero protegieron un mejor hábitat y de mayor calidad para los peces en 2050 y 2100 que las AMP que no consideraron la redistribución de especies, lo que indica una mejora en la conservación de peces bajo el cambio climático. Se sugiere que la incorporación de la redistribución de especies y las compensaciones entre las áreas con una riqueza de especies elevada y las áreas que albergan hábitats para especies raras abordarán la conservación de peces costeros bajo el cambio climático. Esta investigación proporciona información valiosa para la conservación de peces y es un precursor de la planeación sistemática de la conservación a lo largo de la costa de los mares de China.


Asunto(s)
Cambio Climático , Resiliencia Psicológica , Animales , Conservación de los Recursos Naturales , Ecosistema , Océanos y Mares , Peces , Biodiversidad , China
20.
Oecologia ; 205(1): 59-68, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676730

RESUMEN

Increased atmospheric nitrogen (N) deposition and climate warming are both anticipated to influence the N dynamics of northern temperate ecosystems substantially over the next century. In field experiments with N addition and warming treatments, cumulative treatment effects can be important for explaining variation in treatment effects on N dynamics over time; however, comparisons between data collected in the early vs. later years potentially can be confounded with interactions between treatment effects and inter-annual variation in environmental conditions or other factors. We compared the short-term versus long-term effects of N addition and warming on net N mineralization and N leaching in a grass-dominated old field using in situ soil cores. We added new N addition and warming plots (3 years old) to an existing field experiment (16 years old), which enabled comparison of the treatment effects at both time scales while controlling for potential inter-annual variation in other factors. For net N mineralization, there was a significant interaction between plot age and N addition over the growing season, and for extractable inorganic N there was a significant interaction between plot age and warming over winter. In both cases, the directions of the treatment effects differed among old and new plots. Moreover, the responses in the new plots differed from the responses observed previously when the 16-year-old plots had been new. These results demonstrate how inter-annual variation in responses, independent from cumulative treatment effects, can play an important role in interpreting long-term effects on soil N cycling in global change field experiments.


Asunto(s)
Nitrógeno , Poaceae , Suelo , Suelo/química , Estaciones del Año , Ecosistema , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA