Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148303

RESUMEN

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Colletotrichum , Cotiledón , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas , Colletotrichum/fisiología , Colletotrichum/ultraestructura , Colletotrichum/patogenicidad , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Cotiledón/microbiología , Cotiledón/ultraestructura , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hifa/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Transmisión
2.
Mol Plant Microbe Interact ; : MPMI04240045R, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949504

RESUMEN

Hemibiotrophic fungi in the genus Colletotrichum employ a biotrophic phase to invade host epidermal cells followed by a necrotrophic phase to spread through neighboring mesophyll and epidermal cells. We used serial block face-scanning electron microscopy (SBF-SEM) to compare subcellular changes that occur in Medicago sativa (alfalfa) cotyledons during infection by Colletotrichum destructivum (compatible on M. sativa) and C. higginsianum (incompatible on M. sativa). Three-dimensional reconstruction of serial images revealed that alfalfa epidermal cells infected with C. destructivum undergo massive cytological changes during the first 60 h following inoculation to accommodate extensive intracellular hyphal growth. Conversely, inoculation with the incompatible species C. higginsianum resulted in no successful penetration events and frequent formation of papilla-like structures and cytoplasmic aggregates beneath attempted fungal penetration sites. Further analysis of the incompatible interaction using focused ion beam-scanning electron microscopy (FIB-SEM) revealed the formation of large multivesicular body-like structures that appeared spherical and were not visible in compatible interactions. These structures often fused with the host plasma membrane, giving rise to paramural bodies that appeared to be releasing extracellular vesicles (EVs). Isolation of EVs from the apoplastic space of alfalfa leaves at 60 h postinoculation showed significantly more vesicles secreted from alfalfa infected with incompatible fungus compared with compatible fungus, which in turn was more than produced by noninfected plants. Thus, the increased frequency of paramural bodies during incompatible interactions correlated with an increase in EV quantity in apoplastic wash fluids. Together, these results suggest that EVs and paramural bodies contribute to immunity during pathogen attack in alfalfa. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

3.
Plant J ; 110(2): 452-469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35061924

RESUMEN

In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHOSPHATE2 (PHO2), or treatment with high phosphate (Pi) levels is accompanied by an increase in Pi content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g., miR399 overexpressors, pho2 mutants, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression levels of genes in the salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling pathways were higher in high Pi plants compared to wild-type plants grown under control conditions, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while pathogen infection induces PDF1.2 expression in miR399 OE and pho2 plants, VSP2 expression is downregulated by pathogen infection in these plants. This study supports the notion that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand interactions between Pi signaling and hormonal signaling pathways for modulation of plant immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Oxilipinas/metabolismo , Fosfatos/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Ácido Salicílico/metabolismo
4.
Metab Eng ; 80: 216-231, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863177

RESUMEN

Transcriptomic studies have revealed that fungal pathogens of plants activate the expression of numerous biosynthetic gene clusters (BGC) exclusively when in presence of a living host plant. The identification and structural elucidation of the corresponding secondary metabolites remain challenging. The aim was to develop a polycistronic system for heterologous expression of fungal BGCs in Saccharomyces cerevisiae. Here we adapted a polycistronic vector for efficient, seamless and cost-effective cloning of biosynthetic genes using in vivo assembly (also called transformation-assisted recombination) directly in Escherichia coli followed by heterologous expression in S. cerevisiae. Two vectors were generated with different auto-inducible yeast promoters and selection markers. The effectiveness of these vectors was validated with fluorescent proteins. As a proof-of-principle, we applied our approach to the Colletochlorin family of molecules. These polyketide secondary metabolites were known from the phytopathogenic fungus Colletotrichum higginsianum but had never been linked to their biosynthetic genes. Considering the requirement for a halogenase, and by applying comparative genomics, we identified a BGC putatively involved in the biosynthesis of Colletochlorins in C. higginsianum. Following the expression of those genes in S. cerevisiae, we could identify the presence of the precursor Orsellinic acid, Colletochlorins and their non-chlorinated counterparts, the Colletorins. In conclusion, the polycistronic vectors described herein were adapted for the host S. cerevisiae and allowed to link the Colletochlorin compound family to their corresponding biosynthetic genes. This system will now enable the production and purification of infection-specific secondary metabolites of fungal phytopathogens. More widely, this system could be applied to any fungal BGC of interest.


Asunto(s)
Familia de Multigenes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiones Promotoras Genéticas , Familia de Multigenes/genética
5.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958874

RESUMEN

Colletotrichum higginsianum is a major pathogen causing anthracnose in Chinese flowering cabbage (Brassica parachinensis), posing a significant threat to the Chinese flowering cabbage industry. The conidia of C. higginsianum germinate and form melanized infection structures called appressoria, which enable penetration of the host plant's epidermal cells. However, the molecular mechanism underlying melanin biosynthesis in C. higginsianum remains poorly understood. In this study, we identified two enzymes related to DHN-melanin biosynthesis in C. higginsianum: ChPks and ChThr1. Our results demonstrate that the expression levels of genes ChPKS and ChTHR1 were significantly up-regulated during hyphal and appressorial melanization processes. Furthermore, knockout of the gene ChPKS resulted in a blocked DHN-melanin biosynthetic pathway in hyphae and appressoria, leading to increased sensitivity of the ChpksΔ mutant to cell-wall-interfering agents as well as decreased turgor pressure and pathogenicity. It should be noted that although the Chthr1Δ mutant still exhibited melanin accumulation in colonies and appressoria, its sensitivity to cell-wall-interfering agents and turgor pressure decreased compared to wild-type strains; however, complete loss of pathogenicity was not observed. In conclusion, our results indicate that DHN-melanin plays an essential role in both pathogenicity and cell wall integrity in C. higginsianum. Specifically, ChPks is crucial for DHN-melanin biosynthesis while deficiency of ChThr1 does not completely blocked melanin production.


Asunto(s)
Colletotrichum , Melaninas , Virulencia , Melaninas/metabolismo , Pared Celular/metabolismo
6.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003546

RESUMEN

In Arabidopsis thaliana (Arabidopsis), nonhost resistance (NHR) is influenced by both leaf age and the moment of inoculation. While the circadian clock and photoperiod have been linked to the time-dependent regulation of NHR in Arabidopsis, the mechanism underlying leaf age-dependent NHR remains unclear. In this study, we investigated leaf age-dependent NHR to Pyricularia oryzae in Arabidopsis. Our findings revealed that this NHR type is regulated by both miR156-dependent and miR156-independent pathways. To identify the key players, we utilized rice-FOX Arabidopsis lines and identified the rice HD-Zip I OsHOX6 gene. Notably, OsHOX6 expression confers robust NHR to P. oryzae and Colletotrichum nymphaeae in Arabidopsis, with its effect being contingent upon leaf age. Moreover, we explored the role of AtHB7 and AtHB12, the Arabidopsis closest homologues of OsHOX6, by studying mutants and overexpressors in Arabidopsis-C. higginsianum interaction. AtHB7 and AtHB12 were found to contribute to both penetration resistance and post-penetration resistance to C. higginsianum in a leaf age- and time-dependent manner. These findings highlight the involvement of HD-Zip I AtHB7 and AtHB12, well-known regulators of development and abiotic stress responses, in biotic stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Leucina Zippers , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
7.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901806

RESUMEN

Anthracnose disease of cruciferous plants caused by Colletotrichum higginsianum is a serious fungal disease that affects cruciferous crops such as Chinese cabbage, Chinese flowering cabbage, broccoli, mustard plant, as well as the model plant Arabidopsis thaliana. Dual transcriptome analysis is commonly used to identify the potential mechanisms of interaction between host and pathogen. In order to identify differentially expressed genes (DEGs) in both the pathogen and host, the conidia of wild-type (ChWT) and Chatg8 mutant (Chatg8Δ) strains were inoculated onto leaves of A. thaliana, and the infected leaves of A. thaliana at 8, 22, 40, and 60 h post-inoculation (hpi) were subjected to dual RNA-seq analysis. The results showed that comparison of gene expression between the 'ChWT' and 'Chatg8Δ' samples detected 900 DEGs (306 upregulated and 594 down-regulated) at 8 hpi, 692 DEGs (283 upregulated and 409 down-regulated) at 22 hpi, 496 DEGs (220 upregulated and 276 down-regulated) at 40 hpi, and 3159 DEGs (1544 upregulated and 1615 down-regulated) at 60 hpi. GO and KEGG analyses found that the DEGs were mainly involved in fungal development, biosynthesis of secondary metabolites, plant-fungal interactions, and phytohormone signaling. The regulatory network of key genes annotated in the Pathogen-Host Interactions database (PHI-base) and Plant Resistance Genes database (PRGdb), as well as a number of key genes highly correlated with the 8, 22, 40, and 60 hpi, were identified during the infection. Among the key genes, the most significant enrichment was in the gene encoding the trihydroxynaphthalene reductase (THR1) in the melanin biosynthesis pathway. Both Chatg8Δ and Chthr1Δ strains showed varying degrees of reduction of melanin in appressoria and colonies. The pathogenicity of the Chthr1Δ strain was lost. In addition, six DEGs from C. higginsianum and six DEGs from A. thaliana were selected for real-time quantitative PCR (RT-qPCR) to confirm the RNA-seq results. The information gathered from this study enriches the resources available for research into the role of the gene ChATG8 during the infection of A. thaliana by C. higginsianum, such as potential links between melanin biosynthesis and autophagy, and the response of A. thaliana to different fungal strains, thereby providing a theoretical basis for the breeding of cruciferous green leaf vegetable cultivars with resistance to anthracnose disease.


Asunto(s)
Arabidopsis , Colletotrichum , Virulencia , Arabidopsis/genética , Melaninas/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/microbiología , Transcriptoma
8.
Phytopathology ; 111(9): 1571-1582, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33567906

RESUMEN

Colletotrichum higginsianum is an important hemibiotrophic fungal pathogen that causes anthracnose disease on various cruciferous plants. Discovery of new virulence factors could lead to strategies for effectively controlling anthracnose. Acyl-CoA binding proteins (ACBPs) are mainly involved in binding and trafficking acyl-CoA esters in eukaryotic cells. However, the functions of this important class of proteins in plant fungal pathogens remain unclear. In this study, we performed an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis to identify differentially expressed proteins (DEPs) between a nonpathogenic mutant ΔCh-MEL1 and the wild type. Based on iTRAQ data, DEPs in the ΔCh-MEL1 mutant were mainly associated with melanin biosynthesis, carbohydrate and energy metabolism, lipid metabolism, redox processes, and amino acid metabolism. Proteomic analysis revealed that many DEPs might be involved in growth and pathogenesis of C. higginsianum. Among them, an acyl-CoA binding protein, ChAcb1, was selected for further functional studies. Deletion of ChAcb1 caused defects in vegetative growth and conidiation. ChAcb1 is also required for response to hyperosmotic and oxidative stresses, and maintenance of cell wall integrity. Importantly, the ΔChAcb1 mutant exhibited reduced virulence, and microscopic examination revealed that it was defective in appressorial penetration and infectious growth. Furthermore, the ΔChAcb1 mutant was impaired in fatty acid and lipid metabolism. Taken together, ChAcb1 was identified as a new virulence gene in this plant pathogenic fungus.


Asunto(s)
Colletotrichum , Factores de Virulencia , Colletotrichum/genética , Enfermedades de las Plantas , Proteómica , Factores de Virulencia/genética
9.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073109

RESUMEN

Colletotrichum higginsianum is an important hemibiotrophic plant pathogen that causes crucifer anthracnose worldwide. To date, some hexose transporters have been identified in fungi. However, the functions of hexose transporters in virulence are not clear in hemibiotrophic phytopathogens. In this study, we identified and characterized a new hexose transporter gene named ChHxt6 from a T-DNA insertion pathogenicity-deficient mutant G256 in C. higginsianum. Expression profiling analysis revealed that six ChHxt genes, ChHxt1 to ChHxt6, exhibited specific expression patterns in different infection phases of C. higginsianum. The ChHxt1 to ChHxt6 were separately deleted using the principle of homologous recombination. ChHxt1 to ChHxt6 deletion mutants grew normally on PDA plates, but only the virulence of ChHxt4 and ChHxt6 deletion mutants was reduced. ChHxt4 was required for fungal infection in both biotrophic and necrotrophic stages, while ChHxt6 was important for formation of necrotrophic hyphae during infection. In addition, ChHxts were functional in uptake of different hexoses, but only ChHxt6-expressing cells could grow on all five hexoses, indicating that the ChHxt6 was a central hexose transporter and crucial for hexose uptake. Site-directed mutation of T169S and P221L positions revealed that these two positions were necessary for hexose transport, whereas only the mutation Thr169 caused reduced virulence and defect in formation of necrotrophic hyphae. Taken together, ChHxt6 might regulate fungal virulence by modulating the utilization of hexose.


Asunto(s)
Proteínas Fúngicas/fisiología , Proteínas de Transporte de Monosacáridos/metabolismo , Enfermedades de las Plantas/microbiología , Factores de Virulencia/metabolismo , Arabidopsis/microbiología , Brassica/microbiología , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Hexosas/metabolismo , Virulencia
10.
New Phytol ; 226(1): 189-204, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31749193

RESUMEN

Arabidopsis plants overexpressing glycolate oxidase in chloroplasts (GO5) and loss-of-function mutants of the major peroxisomal catalase isoform, cat2-2, produce increased hydrogen peroxide (H2 O2 ) amounts from the respective organelles when subjected to photorespiratory conditions like increased light intensity. Here, we have investigated if and how the signaling processes triggered by H2 O2 production in response to shifts in environmental conditions and the concomitant induction of indole phytoalexin biosynthesis in GO5 affect susceptibility towards the hemibiotrophic fungus Colletotrichum higginsianum. Combining histological, biochemical, and molecular assays, we found that the accumulation of the phytoalexin camalexin was comparable between GO genotypes and cat2-2 in the absence of pathogen. Compared with wild-type, GO5 showed improved resistance after light-shift-mediated production of H2 O2 , whereas cat2-2 became more susceptible and allowed significantly more pathogen entry. Unlike GO5, cat2-2 suffered from severe oxidative stress after light shifts, as indicated by glutathione pool size and oxidation state. We discuss a connection between elevated oxidative stress and dampened induction of salicylic acid mediated defense in cat2-2. Genetic analyses demonstrated that induced resistance of GO5 is dependent on WRKY33, but not on camalexin production. We propose that indole carbonyl nitriles might play a role in defense against C. higginsianum.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Colletotrichum/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
11.
Plant Cell Physiol ; 59(1): 190-204, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29149328

RESUMEN

MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNAs that direct post-transcriptional gene silencing in eukaryotes. In plants, the expression of a large number of miRNAs has been shown to be regulated during pathogen infection. However, the functional role of the majority of these pathogen-regulated miRNAs has not been elucidated. In this work, we investigated the role of Arabidopsis miR858 in the defense response of Arabidopsis plants to infection by fungal pathogens with necrotrophic (Plectosphaerella cucumerina) or hemibiotrophic (Fusarium oxysporum and Colletotrichum higginsianum) lifestyles. Whereas overexpression of MIR858 enhances susceptibility to pathogen infection, interference with miR858 activity by target mimics (MIM858 plants) results in disease resistance. Upon pathogen challenge, stronger activation of the defense genes PDF1.2 and PR4 occurs in MIM858 plants than in wild-type plants, whereas pathogen infection induced weaker activation of these genes in MIR858 overexpressor plants. Reduced miR858 activity, and concomitant up-regulation of miR858 target genes, in MIM858 plants, also leads to accumulation of flavonoids in Arabidopsis leaves. The antifungal activity of phenylpropanoid compounds, including flavonoids, is presented. Furthermore, pathogen infection or treatment with fungal elicitors is accompanied by a gradual decrease in MIR858 expression in wild-type plants, suggesting that miR858 plays a role in PAMP (pathogen-associated molecular pattern)-triggered immunity. These data support that miR858 is a negative regulator of Arabidopsis immunity and provide new insights into the relevant role of miR858-mediated regulation of the phenylpropanoid biosynthetic pathway in controlling Arabidopsis immunity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistencia a la Enfermedad/genética , MicroARNs/genética , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Arabidopsis/microbiología , Colletotrichum/fisiología , Flavonoides/metabolismo , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente
12.
Int J Mol Sci ; 19(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041456

RESUMEN

Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.


Asunto(s)
Arabidopsis/microbiología , Colletotrichum/patogenicidad , Interacciones Huésped-Patógeno/genética , Arabidopsis/genética , Arabidopsis/inmunología , Colletotrichum/genética , Genoma Fúngico , Genoma de Planta , Inmunidad de la Planta/genética , Virulencia/genética
13.
BMC Genomics ; 18(1): 667, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851275

RESUMEN

BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


Asunto(s)
Cromosomas Fúngicos/genética , Colletotrichum/genética , Colletotrichum/metabolismo , Elementos Transponibles de ADN/genética , Genómica , Familia de Multigenes/genética , Recombinación Homóloga/genética , Anotación de Secuencia Molecular , Filogenia , Mutación Puntual/genética
14.
BMC Microbiol ; 17(1): 22, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103800

RESUMEN

BACKGROUND: Mob family proteins are conserved between animals, plants and fungi and are essential for the activation of NDR kinases that control crucial cellular processes like cytokinesis, proliferation and morphology. RESULTS: We identified a hypomorphic allele of ChMOB2 in a random insertional mutant (vir-88) of the hemibiotrophic ascomycete fungus Colletotrichum higginsianum. The mutant is impaired in conidiation, host penetration and virulence on Arabidopsis thaliana. ChMob2 binds to and co-localizes with the NDR/LATS kinase homolog ChCbk1. Mutants in the two potential ChCbk1 downstream targets ChSSD1 and ChACE2 show defects in pathogenicity. The genome of C. higginsianum encodes two more Mob proteins. While we could not detect any effect on pathogenicity in ΔChmob3 mutants, ChMob1 is involved in conidiation, septae formation and virulence. CONCLUSION: This study shows that ChMob2 binds to the conserved NDR/LATS Kinase ChCbk1 and plays an important role in pathogenicity of Colletotrichum higginsianum on Arabidopsis thaliana.


Asunto(s)
Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Virulencia/genética , Arabidopsis/microbiología , Colletotrichum/patogenicidad , ADN Bacteriano , Genes Fúngicos/genética , Proteínas Quinasas Activadas por Mitógenos , Mutagénesis Insercional , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología
15.
Microb Pathog ; 64: 6-17, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23806215

RESUMEN

To investigate the molecular and genetic mechanisms underlying virulence of Colletotrichum higginsianum on Arabidopsis thaliana, a T-DNA insertion mutant library of C. higginsianum, the causal agent of crucifer anthracnose, was established using Agrobacterium tumefaciens-mediated transformation. Among 875 transformants tested for virulence on Arabidopsis, six mutants with altered virulence, including an appressorial melanin-deficient mutant T734, two mutants defective in penetration, T45 and B30, and three mutants, T679, T732 and T801, that cause hypersensitive reactions on host Arabidopsis, were obtained. Southern blot analysis indicated that the mutants T732 and T734 harbored single-site T-DNA integrations, while B30 harbored two T-DNA insertions. Border flanking sequences of T-DNAs from these mutants were recovered by inverse polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR. Sequence analyses revealed that single T-DNA insertions in mutant T734 targeted the coding region of a gene with unknown function, and in mutant T732 targeted a gene encoding a copper amine oxidase. The two T-DNA insertion sites in mutant B30 were found in the coding region of a gene encoding an exosome component and in the upstream region of a DUF221-domain gene. None of these genes have previously been implicated in virulence of the phytopathogenic fungi. Among these avirulent mutants, T734 showed altered color in colony growth and produced melanin-deficient, albino appressoria. The T-DNA insert in T734 was detected in the coding region of a gene named C. higginsianum melanin-deficiency gene (Ch-MEL1), which is highly similar to a gene encoding a hypothetical protein in Colletotrichum gloeosporioides (GenBank ELA33048). To validate whether the Ch-MEL1 gene was associated with virulence of the mutant T734, a targeted gene disruption and complementation approach was used. The appressoria of ▵Ch-mel1 null mutants were defective in melanization and failed to penetrate the host epidermal cells. When inoculated onto the wounded leaf tissues, the ▵Ch-mel1 mutants grew on host tissues but failed to cause lesions beyond the wound site. In contrast, both the complement C▵Ch-mel1-2 and the wild type produced melanized appressoria and caused necrosis on leaves of Arabidopsis. Ch-MEL1 is required for both appressorial melanin production in C. higginsianum and post-invasive growth in host tissues. Together with identification of other avirulent mutants and their associated genes, this study provides novel insights into molecular mechanisms underlying virulence of the hemibiotroph, C. higginsianum.


Asunto(s)
Colletotrichum/patogenicidad , Genes Fúngicos , Mutagénesis Insercional , Factores de Virulencia/genética , Arabidopsis/microbiología , Colletotrichum/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Eliminación de Gen , Prueba de Complementación Genética , Pigmentos Biológicos/metabolismo , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Virulencia
16.
Mol Plant Pathol ; 24(11): 1451-1464, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522511

RESUMEN

Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.


Asunto(s)
Arabidopsis , Colletotrichum , Técnicas de Inactivación de Genes , Sistemas CRISPR-Cas/genética , Arabidopsis/genética , Arabidopsis/microbiología , Factores de Virulencia/genética , Colletotrichum/genética
17.
J Extracell Vesicles ; 11(5): e12216, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524440

RESUMEN

Fungal phytopathogens secrete extracellular vesicles (EVs) associated with enzymes and phytotoxic metabolites. While these vesicles are thought to promote infection, defining the true contents and functions of fungal EVs, as well as suitable protein markers, is an ongoing process. To expand our understanding of fungal EVs and their possible roles during infection, we purified EVs from the hemibiotrophic phytopathogen Colletotrichum higginsianum, the causative agent of anthracnose disease in multiple plant species, including Arabidopsis thaliana. EVs were purified in large numbers from the supernatant of protoplasts but not the supernatant of intact mycelial cultures. We purified two separate populations of EVs, each associated with over 700 detected proteins, including proteins involved in vesicle transport, cell wall biogenesis and the synthesis of secondary metabolites. We selected two SNARE proteins (Snc1 and Sso2) and one 14-3-3 protein (Bmh1) as potential EV markers and generated transgenic strains expressing fluorescent fusions. Each marker was confirmed to be protected inside EVs. Fluorescence microscopy was used to examine the localization of each marker during infection on Arabidopsis leaves. These findings further our understanding of EVs in fungal phytopathogens and will help build an experimental system to study EV interkingdom communication between plants and fungi.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Vesículas Extracelulares , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología
18.
Plants (Basel) ; 11(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35161367

RESUMEN

Cell wall structural modifications through pectin cross-linkages between calcium ions and/or boric acid may be key to mitigating dehydration stress and fungal pathogens. Water loss was profiled in a pure pectin system and in vivo. While calcium and boron reduced water loss in pure pectin standards, the impact on Allium species was insignificant (p > 0.05). Nevertheless, synchrotron X-ray microscopy showed the localization of exogenously applied calcium to the apoplast in the epidermal cells of Allium fistulosum. Exogenous calcium application increased viscosity and resistance to shear force in Allium fistulosum, suggesting the formation of calcium cross-linkages ("egg-box" structures). Moreover, Allium fistulosum (freezing tolerant) was also more tolerant to dehydration stress compared to Allium cepa (freezing sensitive). Furthermore, the addition of boric acid (H3BO3) to pure pectin reduced water loss and increased viscosity, which indicates the formation of RG-II dimers. The Arabidopsis boron transport mutant, bor1, expressed greater water loss and, based on the lesion area of leaf tissue, a greater susceptibility to Colletotrichum higginsianum and Botrytis cinerea. While pectin modifications in the cell wall are likely not the sole solution to dehydration and biotic stress resistance, they appear to play an important role against multiple stresses.

19.
Front Microbiol ; 11: 763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457707

RESUMEN

The fungal pathogen, Colletotrichum higginsianum, causes a disease called anthracnose on various cruciferous plants. Here, we characterized a Saccharomyces cerevisiae CDC25 ortholog in C. higginsianum, named ChCDC25 (CH063_04363). The ChCDC25 deletion mutants were defective in mycelial growth, conidiation, conidial germination, appressorial formation, and invasive hyphal growth on Arabidopsis leaves, resulting in loss of virulence. Furthermore, deletion of ChCDC25 led to increased sensitivity to cell wall stress and resulted in resistance to osmotic stress. Exogenous cyclic adenosine monophosphate (cAMP) and IBMX treatments were able to induce appressorial formation in the ChCDC25 mutants, but abnormal germ tubes were still formed. The results implied that ChCDC25 is involved in pathogenicity by regulation of cAMP signaling pathways in C. higginsianum. More importantly, we found that ChCDC25 may interact with Ras2 and affects Ras2 protein abundance in C. higginsianum. Taken together, ChCDC25 regulates infection-related morphogenesis and pathogenicity of C. higginsianum. This is the first report to reveal functions of a CDC25 ortholog in a hemibiotrophic phytopathogen.

20.
Plant Sci ; 283: 1-10, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128679

RESUMEN

Colletotrichum higginsianum causes anthracnose disease in a wide range of cruciferous crops and has been used as a model system to study plant-pathogen interactions and pathogenicity of hemibiotrophic plant pathogens. Conidiation, hyphae growth, appressorial development and appressorial penetration are significant steps during the infection process of C. higginsianum. However, the mechanisms of these important steps during infection remain incompletely understood. To further investigate the mechanisms of the plant-C. higginsianum interactions during infection progress, we characterized Cyclase-Associated Protein (ChCAP) gene. Deletion of the ChCAP gene resulted in reduction in conidiation and hyphal growth rate. The pathogenicity of ΔChCAP mutants was significantly reduced with much smaller lesion on the infected leaves compared to that of wild type strain with typically water-soaked and dark necrotic lesions on Arabidopsis leaves. Further study demonstrated that the appressorial formation rate, turgor pressure, penetration ability and switch from biotrophic to necrotrophic phases decreased obviously in ΔChCAP mutants, indicating that the attenuated pathogenicity of ΔChCAP mutants was due to these defective phenotypes. In addition, the ΔChCAP mutants sectored on PDA with abnormal, dark color, vesicle-like colony morphology and hyphae tip. Moreover, the ΔChCAP mutants had a reduced intracellular cAMP levels and exogenous cAMP can partially rescue the defects of ΔChCAP mutants in appressorial formation and penetration rate, but not in colony morphology, conidial shape and virulence, indicating that ChCAP is a key component in cAMP signaling pathway and likely play other roles in biology of C. higginsianum. In summary, our findings support the role of ChCAP in regulating conidiation, intracellular cAMP level, hyphal growth, appressorial formation, penetration ability and pathogenicity of this hemibiotrophic fungus.


Asunto(s)
Colletotrichum/crecimiento & desarrollo , AMP Cíclico/metabolismo , Proteínas Fúngicas/fisiología , Hifa/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo , Arabidopsis/microbiología , Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Proteínas Fúngicas/metabolismo , Hifa/fisiología , Filogenia , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Esporas Fúngicas/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA