Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.142
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 53(5): 1050-1062.e5, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207210

RESUMEN

Herpes simplex virus type 1 (HSV-1)-infected corneas can develop a blinding immunoinflammatory condition called herpes stromal keratitis (HSK), which involves the loss of corneal sensitivity due to retraction of sensory nerves and subsequent hyperinnervation with sympathetic nerves. Increased concentrations of the cytokine VEGF-A in the cornea are associated with HSK severity. Here, we examined the impact of VEGF-A on neurologic changes that underly HSK using a mouse model of HSV-1 corneal infection. Both CD4+ T cells and myeloid cells produced pathogenic levels of VEGF-A within HSV-1-infected corneas, and CD4+ cell depletion promoted reinnervation of HSK corneas with sensory nerves. In vitro, VEGF-A from infected corneas repressed sensory nerve growth and promoted sympathetic nerve growth. Neutralizing VEGF-A in vivo using bevacizumab inhibited sympathetic innervation, promoted sensory nerve regeneration, and alleviated disease. Thus, VEGF-A can shape the sensory and sympathetic nerve landscape within the cornea, with implications for the treatment of blinding corneal disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Córnea/inervación , Córnea/metabolismo , Queratitis Herpética/etiología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Fibras Adrenérgicas , Animales , Córnea/inmunología , Córnea/virología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Herpesvirus Humano 1 , Humanos , Inmunofenotipificación , Queratitis Herpética/metabolismo , Queratitis Herpética/patología , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Depleción Linfocítica , Ratones , Neuritis , Índice de Severidad de la Enfermedad
2.
Semin Immunol ; 67: 101753, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060806

RESUMEN

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Asunto(s)
Fusarium , Queratitis , Humanos , Hongos , Córnea/microbiología , Córnea/patología , Queratitis/microbiología , Queratitis/patología , Fusarium/fisiología , Neutrófilos
3.
Hum Mol Genet ; 33(6): 491-500, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37971355

RESUMEN

Pathogenic variants in the highly conserved OVOL2 promoter region cause posterior polymorphous corneal dystrophy (PPCD) 1 by inducing an ectopic expression of the endothelial OVOL2 mRNA. Here we produced an allelic series of Ovol2 promoter mutations in the mouse model including the heterozygous c.-307T>C variant (RefSeq NM_021220.4) causing PPCD1 in humans. Despite the high evolutionary conservation of the Ovol2 promoter, only some alterations of its sequence had phenotypic consequences in mice. Four independent sequence variants in the distal part of the Ovol2 promoter had no significant effect on endothelial Ovol2 mRNA level or caused any ocular phenotype. In contrast, the mutation c.-307T>C resulted in increased Ovol2 expression in the corneal endothelium. However, only a small fraction of adult mice c.-307T>C heterozygotes developed ocular phenotypes such as irido-corneal adhesions, and corneal opacity. Interestingly, phenotypic penetrance was increased at embryonic stages. Notably, c.-307T>C mutation is located next to the Ovol1/Ovol2 transcription factor binding site. Mice carrying an allele with a deletion encompassing the Ovol2 binding site c.-307_-320del showed significant Ovol2 gene upregulation in the cornea endothelium and exhibited phenotypes similar to the c.-307T>C mutation. In conclusion, although the mutations c.-307T>C and -307_-320del lead to a comparably strong increase in endothelial Ovol2 expression as seen in PPCD1 patients, endothelial dystrophy was not observed in the mouse model, implicating species-specific differences in endothelial cell biology. Nonetheless, the emergence of dominant ocular phenotypes associated with Ovol2 promoter variants in mice implies a potential role of this gene in eye development and disease.


Asunto(s)
Distrofias Hereditarias de la Córnea , Adulto , Humanos , Animales , Ratones , Fenotipo , Distrofias Hereditarias de la Córnea/genética , Endotelio Corneal , Modelos Animales de Enfermedad , ARN Mensajero , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 120(31): e2217795120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487076

RESUMEN

The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.


Asunto(s)
Córnea , Epitelio Corneal , Animales , Humanos , Ratones , Vías Aferentes , Inflamación , Microscopía Intravital
5.
Proc Natl Acad Sci U S A ; 120(2): e2204134120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595669

RESUMEN

Many epithelial compartments undergo constitutive renewal in homeostasis but activate unique regenerative responses following injury. The clear corneal epithelium is crucial for vision and is renewed from limbal stem cells (LSCs). Using single-cell RNA sequencing, we profiled the mouse corneal epithelium in homeostasis, aging, diabetes, and dry eye disease (DED), where tear deficiency predisposes the cornea to recurrent injury. In homeostasis, we capture the transcriptional states that accomplish continuous tissue turnover. We leverage our dataset to identify candidate genes and gene networks that characterize key stages across homeostatic renewal, including markers for LSCs. In aging and diabetes, there were only mild changes with <15 dysregulated genes. The constitutive cell types that accomplish homeostatic renewal were conserved in DED but were associated with activation of cell states that comprise "adaptive regeneration." We provide global markers that distinguish cell types in homeostatic renewal vs. adaptive regeneration and markers that specifically define DED-elicited proliferating and differentiating cell types. We validate that expression of SPARC, a marker of adaptive regeneration, is also induced in corneal epithelial wound healing and accelerates wound closure in a corneal epithelial cell scratch assay. Finally, we propose a classification system for LSC markers based on their expression fidelity in homeostasis and disease. This transcriptional dissection uncovers the dramatically altered transcriptional landscape of the corneal epithelium in DED, providing a framework and atlas for future study of these ocular surface stem cells in health and disease.


Asunto(s)
Síndromes de Ojo Seco , Epitelio Corneal , Limbo de la Córnea , Ratones , Animales , Limbo de la Córnea/fisiología , Diferenciación Celular/fisiología , Córnea , Cicatrización de Heridas/genética , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Homeostasis/genética
6.
Proc Natl Acad Sci U S A ; 120(13): e2217576120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943878

RESUMEN

Diabetes can result in impaired corneal wound healing. Mitochondrial dysfunction plays an important role in diabetic complications. However, the regulation of mitochondria function in the diabetic cornea and its impacts on wound healing remain elusive. The present study aimed to explore the molecular basis for the disturbed mitochondrial metabolism and subsequent wound healing impairment in the diabetic cornea. Seahorse analysis showed that mitochondrial oxidative phosphorylation is a major source of ATP production in human corneal epithelial cells. Live corneal biopsy punches from type 1 and type 2 diabetic mouse models showed impaired mitochondrial functions, correlating with impaired corneal wound healing, compared to nondiabetic controls. To approach the molecular basis for the impaired mitochondrial function, we found that Peroxisome Proliferator-Activated Receptor-α (PPARα) expression was downregulated in diabetic human corneas. Even without diabetes, global PPARα knockout mice and corneal epithelium-specific PPARα conditional knockout mice showed disturbed mitochondrial function and delayed wound healing in the cornea, similar to that in diabetic corneas. In contrast, fenofibrate, a PPARα agonist, ameliorated mitochondrial dysfunction and enhanced wound healing in the corneas of diabetic mice. Similarly, corneal epithelium-specific PPARα transgenic overexpression improved mitochondrial function and enhanced wound healing in the cornea. Furthermore, PPARα agonist ameliorated the mitochondrial dysfunction in primary human corneal epithelial cells exposed to diabetic stressors, which was impeded by siRNA knockdown of PPARα, suggesting a PPARα-dependent mechanism. These findings suggest that downregulation of PPARα plays an important role in the impaired mitochondrial function in the corneal epithelium and delayed corneal wound healing in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , PPAR alfa , Ratones , Humanos , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Córnea/metabolismo , Cicatrización de Heridas/fisiología , Ratones Noqueados , Mitocondrias/metabolismo
7.
Dev Biol ; 508: 64-76, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190932

RESUMEN

Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/ß-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.


Asunto(s)
Ectodermo , Plumas , Animales , Embrión de Pollo , Plumas/metabolismo , Ectodermo/metabolismo , Evolución Biológica , Aves , Queratinas/metabolismo , Morfogénesis
8.
EMBO J ; 40(6): e105123, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33555074

RESUMEN

Similar to the brain, the eye is considered an immune-privileged organ where tissue-resident macrophages provide the major immune cell constituents. However, little is known about spatially restricted macrophage subsets within different eye compartments with regard to their origin, function, and fate during health and disease. Here, we combined single-cell analysis, fate mapping, parabiosis, and computational modeling to comprehensively examine myeloid subsets in distinct parts of the eye during homeostasis. This approach allowed us to identify myeloid subsets displaying diverse transcriptional states. During choroidal neovascularization, a typical hallmark of neovascular age-related macular degeneration (AMD), we recognized disease-specific macrophage subpopulations with distinct molecular signatures. Our results highlight the heterogeneity of myeloid subsets and their dynamics in the eye that provide new insights into the innate immune system in this organ which may offer new therapeutic targets for ophthalmological diseases.


Asunto(s)
Coroides/irrigación sanguínea , Ojo/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Neovascularización Fisiológica/fisiología , Animales , Coroides/embriología , Biología Computacional , Simulación por Computador , Ojo/citología , Ojo/metabolismo , Femenino , Homeostasis/inmunología , Humanos , Inmunidad Innata/inmunología , Degeneración Macular/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/fisiología , Células Mieloides/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética/genética
9.
FASEB J ; 38(17): e70023, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39240185

RESUMEN

Oxygen (O2) metabolism plays a critical role in cornea wound healing, regeneration, and homeostasis; however, the underlying spatiotemporal mechanisms are poorly understood. Here we used an optical sensor to profile O2 flux in intact and wounded corneas of mouse eyes. Intact corneas have unique centrifugal O2 influx profiles, smallest flux at the cornea center, and highest at the limbus. Following cornea injury, the O2 influx profile presents three distinct consecutive phases: a "decreasing" phase from 0 to 6 h, a "recovering" phase from 12 to 48 h, and a 'peak' phase from 48 to 72 h, congruent to previously described healing phases. Immediately after wounding, the O2 influx drops at wound center and wound edge but does not change significantly at the wound side or limbus. Inhibition of reactive oxygen species (ROS) in the decreasing phase significantly reduces O2 influx, decreases epithelial migration and consequently delays healing. The dynamics of O2 influx show a positive correlation with cell proliferation at the wound side, with significantly increased proliferation at the peak phase of O2 influx. This study elucidates the spatiotemporal O2 dynamics in both intact and wounded rodent cornea and shows the crucial role of O2 dynamics in regulating cell migration and proliferation through ROS metabolism, ultimately contributing to wound healing. These results demonstrate the usefulness of the micro-optrode in the characterization of spatiotemporal O2 dynamics. Injury-induced changes in O2 metabolism and ROS production modulate O2 dynamics at wound and control cell migration and proliferation, both essential for proper wound healing.


Asunto(s)
Córnea , Lesiones de la Cornea , Oxígeno , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Animales , Cicatrización de Heridas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ratones , Oxígeno/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Córnea/metabolismo , Ratones Endogámicos C57BL , Masculino , Proliferación Celular , Movimiento Celular
10.
Proc Natl Acad Sci U S A ; 119(29): e2200914119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858321

RESUMEN

The anterior segment of the eye consists of the cornea, iris, ciliary body, crystalline lens, and aqueous humor outflow pathways. Together, these tissues are essential for the proper functioning of the eye. Disorders of vision have been ascribed to defects in all of them; some disorders, including glaucoma and cataract, are among the most prevalent causes of blindness in the world. To characterize the cell types that compose these tissues, we generated an anterior segment cell atlas of the human eye using high-throughput single-nucleus RNA sequencing (snRNAseq). We profiled 195,248 nuclei from nondiseased anterior segment tissues of six human donors, identifying >60 cell types. Many of these cell types were discrete, whereas others, especially in the lens and cornea, formed continua corresponding to known developmental transitions that persist in adulthood. Having profiled each tissue separately, we performed an integrated analysis of the entire anterior segment, revealing that some cell types are unique to a single structure, whereas others are shared across tissues. The integrated cell atlas was then used to investigate cell type-specific expression patterns of more than 900 human ocular disease genes identified through either Mendelian inheritance patterns or genome-wide association studies.


Asunto(s)
Segmento Anterior del Ojo , Oftalmopatías , Adulto , Segmento Anterior del Ojo/citología , Segmento Anterior del Ojo/metabolismo , Humor Acuoso/citología , Humor Acuoso/metabolismo , Atlas como Asunto , Cuerpo Ciliar/citología , Cuerpo Ciliar/metabolismo , Oftalmopatías/genética , Estudio de Asociación del Genoma Completo , Humanos , Iris/citología , Especificidad de Órganos
11.
Genomics ; 116(5): 110902, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053612

RESUMEN

A pioneering pink cultivar of Auricularia cornea, first commercially cultivated in 2022, lacks genomic data, hindering research in genetic breeding, gene discovery, and product development. Here, we report the de novo assembly of the pink A. cornea Fen-A1 genome and provide a detailed functional annotation. The genome is 73.17 Mb in size, contains 86 scaffolds (N50 âˆ¼ 5.49 Mb), 59.09% GC content and encodes 19,120 predicted genes with a BUSCO completeness of 92.60%. Comparative genomic analysis reveals the phylogenetic relatedness of Fen-A1 and remarkable gene family dynamics. Putative genes were found mapped to 3 antibiotic-related, 36 light-dependent and 25 terpene metabolites. In addition, 789 CAZymes genes were classified, revealing the dynamics of quality loss due to postharvest refrigeration. Overall, our work is the first report on a pink A. cornea genome and provides a comprehensive insight into its complex functions.


Asunto(s)
Genoma de Planta , Filogenia , Anotación de Secuencia Molecular , Basidiomycota/genética
12.
J Biol Chem ; 299(11): 105239, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690686

RESUMEN

Hyperosmolarity of the ocular surface triggers inflammation and pathological damage in dry eye disease (DED). In addition to a reduction in quality of life, DED causes vision loss and when severe, blindness. Mitochondrial dysfunction occurs as a consequence of hyperosmolar stress. We have previously reported on a role for the insulin-like growth factor binding protein-3 (IGFBP-3) in the regulation of mitochondrial ultrastructure and metabolism in mucosal surface epithelial cells; however, this appears to be context-specific. Due to the finding that IGFBP-3 expression is decreased in response to hyperosmolar stress in vitro and in an animal model of DED, we next sought to determine whether the hyperosmolar stress-mediated decrease in IGFBP-3 alters mitophagy, a key mitochondrial quality control mechanism. Here we show that hyperosmolar stress induces mitophagy through differential regulation of BNIP3L/NIX and PINK1-mediated pathways. In corneal epithelial cells, this was independent of p62. The addition of exogenous IGFBP-3 abrogated the increase in mitophagy. This occurred through regulation of mTOR, highlighting the existence of a new IGFBP-3-mTOR signaling pathway. Together, these findings support a novel role for IGFBP-3 in mediating mitochondrial quality control in DED and have broad implications for epithelial tissues subject to hyperosmolar stress and other mitochondrial diseases.


Asunto(s)
Síndromes de Ojo Seco , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Mitofagia , Animales , Humanos , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Calidad de Vida , Sirolimus , Serina-Treonina Quinasas TOR/genética
13.
J Biol Chem ; 299(10): 105233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690689

RESUMEN

In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.


Asunto(s)
Proteínas Proto-Oncogénicas c-cbl , Transducción de Señal , Humanos , Ligandos , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Fosforilación , Ubiquitinación , Immunoblotting
14.
J Cell Physiol ; 239(5): e31215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308657

RESUMEN

Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.


Asunto(s)
Cilios , Sustancia Propia , Endotelio Corneal , Homeostasis , Animales , Ratones , Actinas/metabolismo , Cilios/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Lesiones de la Cornea/terapia , Sustancia Propia/citología , Sustancia Propia/crecimiento & desarrollo , Sustancia Propia/metabolismo , Endotelio Corneal/citología , Endotelio Corneal/crecimiento & desarrollo , Endotelio Corneal/metabolismo , Homeostasis/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Supresoras de Tumor/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Ciliopatías/terapia
15.
Mol Med ; 30(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172658

RESUMEN

BACKGROUND: Umbilical cord blood-derived therapeutics, such as serum (UCS) and platelet-rich plasma (UCPRP), are popular treatment options in clinical trials and can potentially be utilized to address a clinically unmet need caused by preservatives, specifically benzalkonium chloride (BAK), present in ophthalmic formulations. As current clinical interventions for secondary injuries caused by BAK are suboptimal, this study will explore the feasibility of utilizing UCS and UCPRP for cornea treatment and investigate the underlying mechanisms associated with this approach. METHODS: Mice's corneas were administered BAK to induce damage. UCS and UCPRP were then utilized to attempt to treat the injuries. Ocular tests were performed on the animals to evaluate recovery, while immunostaining, RNA-seq, and subsequent bioinformatics analysis were conducted to investigate the treatment mechanism. RESULTS: BAK administration led to widespread inflammatory responses in the cornea. Subsequent treatment with UCS and UCPRP led to the downregulation of immune-related 'interactions between cytokine receptors' and 'IL-17 signaling' pathways. Although axonal enhancers such as Ngf, Rac2, Robo2, Srgap1, and Rock2 were found to be present in the injured group, robust axonal regeneration was observed only in the UCS and UCPRP treatment groups. Further analysis revealed that, as compared to normal corneas, inflammation was not restored to pre-injury levels post-treatment. Importantly, Neuropeptide Y (Npy) was also involved in regulating immune responses, indicating neuroimmune axis interactions. CONCLUSIONS: Cord blood-derived therapeutics are feasible options for overcoming the sustained injuries induced by BAK in the cornea. They also have potential applications in areas where axonal regeneration is required.


Asunto(s)
Compuestos de Benzalconio , Productos Biológicos , Ratones , Animales , Compuestos de Benzalconio/metabolismo , Compuestos de Benzalconio/farmacología , Neuropéptido Y/metabolismo , Sangre Fetal , Interleucina-17/metabolismo , Córnea/metabolismo
16.
Biochem Biophys Res Commun ; 733: 150726, 2024 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-39317114

RESUMEN

Type I collagen is among the major extracellular proteins that play a significant role in the maintenance of the cornea's structural integrity and is essential in cell adhesion, differentiation, growth, and integrity. Here, we investigated the effect of 300 mT Static Magnetic Field (300 mT SMF) on the structure and molecular properties of acid-solubilized collagens (ASC) isolated from the rat tail tendon. The SMF effects at molecular and atomic levels were investigated by various biophysical approaches like Circular Dichroism Spectropolarimetery (CD), Fourier Transform Infrared Spectroscopy (FTIR), Zetasizer light Scattering, and Rheological assay. Exposure of isolated type I collagen to 300 mT SMF retained its triple helix. The elasticity of collagen molecules and the keratoconus (KCN) cornea treated with SMF decreased significantly after 5 min and slightly after 10, 15, and 20 min of treatments. The exposure to 300 mT SMF shifted the Amid I bond random coil to antiparallel wave number from 1647 to 1631 cm-1. The pH of the 300 mT SMF treated collagen solution increased by about 25 %. The treatment of the KCN corneas with 300 mT SMF decreased their elasticity significantly. The promising results of the effects of 300 mT SMF on the collagen molecules and KCN cornea propose a novel biophysical approach capable of manipulating the collagen's elasticity, surface charges, electrostatic interactions, cross binding, network formation and fine structure. Therefore, SMF treatment may be considered as a novel non-invasive, direct, non-chemical and fast therapeutic and manipulative means to treat KCN cornea where the deviated physico-chemical status of collagen molecules cause deformation.


Asunto(s)
Elasticidad , Queratocono , Estructura Secundaria de Proteína , Queratocono/tratamiento farmacológico , Queratocono/metabolismo , Queratocono/terapia , Animales , Ratas , Campos Magnéticos , Córnea/metabolismo , Colágeno/química , Colágeno/metabolismo , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Humanos
17.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739119

RESUMEN

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Ciprofloxacina , Modelos Animales de Enfermedad , Queratitis , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Porcinos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Meropenem/farmacología
18.
J Neurosci Res ; 102(1): e25285, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284865

RESUMEN

The altered activity generated by corneal neuronal injury can result in morphological and physiological changes in the architecture of synaptic connections in the nervous system. These changes can alter the sensitivity of neurons (both second-order and higher-order projection) projecting pain signals. A complex process involving different cell types, molecules, nerves, dendritic cells, neurokines, neuropeptides, and axon guidance molecules causes a high level of sensory rearrangement, which is germane to all the phases in the pathomechanism of corneal neuropathic pain. Immune cells migrating to the region of nerve injury assist in pain generation by secreting neurokines that ensure nerve depolarization. Furthermore, excitability in the central pain pathway is perpetuated by local activation of microglia in the trigeminal ganglion and alterations of the descending inhibitory modulation for corneal pain arriving from central nervous system. Corneal neuropathic pain may be facilitated by dysfunctional structures in the central somatosensory nervous system due to a lesion, altered synaptogenesis, or genetic abnormality. Understanding these important pathways will provide novel therapeutic insight.


Asunto(s)
Neuralgia , Humanos , Neuralgia/tratamiento farmacológico , Córnea , Sistema Nervioso Central , Neuronas , Orientación del Axón
19.
Ophthalmology ; 131(6): 674-681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38160881

RESUMEN

PURPOSE: To compare the outcomes of deep anterior lamellar keratoplasty (DALK) using dehydrated versus standard organ culture-stored donor corneas for eyes with keratoconus. DESIGN: Prospective, randomized, single-center trial conducted in Italy. PARTICIPANTS: Adult patients (age ≥ 18 years) with keratoconus scheduled for elective DALK. METHODS: Patients undergoing successful type 1 bubble pneumatic dissection using a standard DALK technique were randomized during surgery to receive either dehydrated (n = 30) or standard organ culture-stored (n = 30) donor corneas. MAIN OUTCOME MEASURES: The primary study outcome was best spectacle-corrected visual acuity (BSCVA) 12 months after surgery. Secondary outcomes were refractive astigmatism (RA), endothelial cell density (ECD), and complication rates. RESULTS: Postoperative BSCVA did not significantly differ between groups at both time points: mean difference at 6 months was 0.030 logarithm of the minimum angle of resolution (logMAR; 95% confidence interval [CI], -0.53 to 0.10 logMAR; P = 0.471) and at 12 months was -0.013 logMAR (95% CI, -0.10 to 0.08 logMAR; P = 0.764). No significant differences between groups were observed in terms of postoperative RA and ECD at all time points. In the first 3 days after DALK, an epithelial defect was present in 10 patients (33%) in the organ culture cornea group and in 29 patients (97%) in the dehydrated cornea group. Complete re-epithelialization was achieved by day 7 in all patients (100%) in both groups. CONCLUSIONS: The study provides evidence that the use of dehydrated corneas is noninferior to the use of standard organ culture donor corneas for DALK. Corneal tissue dehydration represents a viable solution that can allow long-term cornea preservation and avoid wastage of unused corneas. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Asunto(s)
Trasplante de Córnea , Queratocono , Técnicas de Cultivo de Órganos , Preservación de Órganos , Donantes de Tejidos , Agudeza Visual , Humanos , Estudios Prospectivos , Masculino , Femenino , Adulto , Trasplante de Córnea/métodos , Agudeza Visual/fisiología , Queratocono/cirugía , Queratocono/fisiopatología , Preservación de Órganos/métodos , Persona de Mediana Edad , Endotelio Corneal/patología , Adulto Joven , Córnea/cirugía , Recuento de Células
20.
Metabolomics ; 20(3): 44, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581549

RESUMEN

INTRODUCTION: Two main approaches (organ culture and hypothermia) for the preservation and storage of human donor corneas are globally adopted for corneal preservation before the transplant. Hypothermia is a hypothermic storage which slows down cellular metabolism while organ culture, a corneal culture performed at 28-37 °C, maintains an active corneal metabolism. Researchers, till now, have just studied the impact of organ culture on human cornea after manipulating and disrupting tissues. OBJECTIVES: The aim of the current work was to optimize an analytical procedure which can be useful for discovering biomarkers capable of predicting tissue health status. For the first time, this research proposed a preliminary metabolomics study on medium for organ culture without manipulating and disrupting the valuable human tissues which could be still used for transplantation. METHODS: In particular, the present research proposed a method for investigating changes in the medium, over a storage period of 20 days, in presence and absence of a human donor cornea. An untargeted metabolomics approach using UHPLC-QTOF was developed to deeply investigate the differences on metabolites and metabolic pathways and the influence of the presence of the cornea inside the medium. RESULTS: Differences in the expression of some compounds emerged from this preliminary metabolomics approach, in particular in medium maintained for 10 and 20 days in presence but also in the absence of cornea. A total of 173 metabolites have been annotated and 36 pathways were enriched by pathway analysis. CONCLUSION: The results revealed a valuable untargeted metabolomics approach which can be applied in organ culture metabolomics.


Asunto(s)
Hipotermia , Humanos , Preservación de Órganos/métodos , Metabolómica , Córnea , Técnicas de Cultivo de Órganos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA