Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(8): 102240, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809641

RESUMEN

The ß-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside ß-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in ß-catenin decrease insulin release. α- and ß-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E ß-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockdown of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin-binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.


Asunto(s)
Uniones Adherentes , Cateninas , Células Secretoras de Insulina , Insulina , Vesículas Secretoras , Uniones Adherentes/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Cateninas/genética , Cateninas/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Vesículas Secretoras/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Catenina delta
2.
Biochem Biophys Res Commun ; 667: 73-80, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37209565

RESUMEN

Breast cancer is one of the most common invasive cancers among women. The leading cause of difficulty in treating breast cancer patients is metastasis. Because cell migration is closely related to breast cancer metastasis, elucidating the detailed mechanism by which breast cancer cells promote their migration is crucial for improving the prognosis of patients. In this study, we investigated the relationship between breast cancer cell migration and Mind bomb1 (MIB1), an E3 ubiquitin ligase. We found that the downregulation of MIB1 promotes the cell migration of MCF7, a breast cancer-derived cell line. Furthermore, knockdown of MIB1 caused a reduction in CTNND1 and thereby impaired E-cadherin membrane localization in the cell boundary region. Taken together, our data suggest that MIB1 might play a role in suppressing breast cancer cell migration.


Asunto(s)
Neoplasias de la Mama , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas , Línea Celular Tumoral , Movimiento Celular/fisiología , Catenina delta , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
J Mol Evol ; 90(5): 362-374, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36036266

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the most lethal cancer types in the world. Currently, the molecular mechanisms and pathways underlying NSCLC oncogenesis are poorly understood. Using multiple Omics data, we systematically explored the differentially expressed circular RNAs (circRNAs) in NSCLC. We also investigated potential microRNA sponges (that absorb circRNAs) in NSCLC and downstream target genes with experimental verifications. hsa_circ_0003497 was down-regulated in NSCLC and played an inhibitory role in tumorigenesis. In contrast, miR-197-3p was up-regulated in NSCLC. hsa_circ_0003497 directly interacts with miR-197-3p and releases a target gene of miR-197-3p termed CTNND1 (a known tumor suppressor gene). Evolutionary analysis reveals fast evolution of this hsa_circ_0003497-miR-197-3p-CTNND1-NSCLC axis in mammals. This work clarified the biological functions and molecular mechanisms of how hsa_circ_0003497 suppresses NSCLC through miR-197-3p and CTNND1. We discovered molecular markers for the prognosis of NSCLC and provided potential intervention targets for its treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Carcinogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
4.
Invest New Drugs ; 40(4): 850-853, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35441911

RESUMEN

Genomic fusions of anaplastic lymphoma kinase (ALK) are a well-established therapeutic target in non-small-cell lung cancer (NSCLC). Although various ALK fusion variants have been identified in NSCLC, their responses to ALK tyrosine-kinase inhibitors (TKIs) are heterogeneous. We report the case of a 71-year-old female patient diagnosed with lung adenocarcinoma with liver metastases. A novel CTNND1 (exon 14)-ALK (exon 20) fusion was identified from the biopsy sample by next-generation sequencing (NGS) and validated by immunohistochemistry (IHC) staining. Alectinib was administered, and the patient soon achieved partial response (PR). The progression-free survival (PFS) exceeded 15 months as of January 25, 2022. Our findings expand the spectrum of ALK rearrangements and provide a potential treatment option for lung adenocarcinoma patients with CTNND1-ALK fusions.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Anciano , Quinasa de Linfoma Anaplásico/genética , Carbazoles , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Crizotinib/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Piperidinas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Exp Eye Res ; 206: 108532, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684456

RESUMEN

Mechanicals forces are known to influence cell behavior. In vivo, the corneal endothelium is under the influence of various mechanical forces, such as intraocular pressure (IOP) and fluid flow. In this study, we used a corneal bioreactor to understand the effect of these hydrodynamic forces on the transcription of intercellular junctions associated genes in the corneal endothelium. Native and tissue-engineered (TE) corneal endothelium were cultured in a corneal bioreactor for 7 days with 16 mmHg IOP and 5 µl/ml of medium flow. RNA was harvested, and gene expression was quantified. Cells that were used to reconstruct the TE corneal endothelia were also seeded on plastic to characterize their morphology by calculating their circularity index. For native endothelia, hydrodynamic forces increased gene expression of GJA1 (connexin 43), CDH2 (N-cadherin), TJP1 (ZO-1), ITGAV (integrin subunit αv), ITGB5 (integrin subunit ß5) and CTNND1 (p120-ctn) by 1.68 ± 0.40, 1.10 ± 0.27, 3.80 ± 0.56, 1.82 ± 0.33, 1.32 ± 0.21 and 3.04 ± 0.63, respectively. For TE corneal endothelium, this fold change was 1.72 ± 0.31, 1.58 ± 0.41, 6.18 ± 1.03, 1.80 ± 0.71, 1.77 ± 0.55, 2.42 ± 0.71. Furthermore, gene transcription fold changes (hydrodynamic/control) increased linearly with TE corneal endothelium cells population morphology with r = 0.83 for TJP1 (ZO-1) and r = 0.58 for CTNND1 (p120-ctn). In fact, the more elongated the cells populations were, the greater hydrodynamic conditions increased the transcription of TJP1 (ZO-1) and CTNND1 (p120-ctn). These results suggest that hydrodynamic forces contribute to the maintenance of tight and adherens junctions of native corneal endothelial cells, as well as to the formation of tight and adherens junctions of corneal endothelial cells that are in the process of forming a functional endothelial barrier.


Asunto(s)
Endotelio Corneal/metabolismo , Uniones Intercelulares/metabolismo , Transcripción Genética , Animales , Células Cultivadas , Endotelio Corneal/citología , Humanos , Hidrodinámica
6.
Pharmacol Res ; 174: 105845, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34428587

RESUMEN

AIMS: N6-Methyladenosine (m6A), one of the important epigenitic modifications, is very commom in messenger RNAs (mRNAs) of eukaryotes, and has been involved in various diseases. However, the role of m6A modification in heart regeneration after injury remains unclear. The study was conducted to investigate whether targeting methyltransferase-like 3 (METTL3) could replenish the loss of cardiomyocytes (CMs) and improve cardiac function after myocardial infarction (MI). METHODS AND RESULTS: METTL3 knockout mouse line was generated. A series of functional experiments were carried out and the molecular mechanism was further explored. We identified that METTL3, a methyltransferase of m6A methylation, is upregulated in mouse hearts after birth, which is the opposite of the changes in CMs proliferation. Furthermore, both METTL3 heterozygous knockout mice and administration of METTL3 shRNA adenovirus in mice exhibited CMs cell cycle re-entered, infract size decreased and cardiac function improved after MI. Mechanically, the silencing of METTL3 promoted CMs proliferation by reducing primary miR-143 (pri-miR-143) m6A modificaiton, thereby inhibiting the pri-miR-143 into mature miR-143-3p. Moreover, we found that miR-143-3p has targeting effects on Yap and Ctnnd1 so as to regulate CMs proliferation. CONCLUSION: METTL3 deficiency contributes to heart regeneration after MI via METTL3-pri-miR-143-(miR-143)-Yap/Ctnnd1 axis. This study provides new insights into the significance of RNA m6A modification in heart regeneration.


Asunto(s)
Adenosina/metabolismo , Metiltransferasas/metabolismo , Infarto del Miocardio/metabolismo , Adenoviridae , Animales , Ciclo Celular , Corazón , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs , ARN Mensajero , Regeneración , Transducción de Señal , Transfección , Regulación hacia Arriba
7.
Acta Pharmacol Sin ; 42(6): 921-931, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32839503

RESUMEN

The neonatal heart possesses the ability to proliferate and the capacity to regenerate after injury; however, the mechanisms underlying these processes are not fully understood. Melatonin has been shown to protect the heart against myocardial injury through mitigating oxidative stress, reducing apoptosis, inhibiting mitochondrial fission, etc. In this study, we investigated whether melatonin regulated cardiomyocyte proliferation and promoted cardiac repair in mice with myocardial infarction (MI), which was induced by ligation of the left anterior descending coronary artery. We showed that melatonin administration significantly improved the cardiac functions accompanied by markedly enhanced cardiomyocyte proliferation in MI mice. In neonatal mouse cardiomyocytes, treatment with melatonin (1 µM) greatly suppressed miR-143-3p levels. Silencing of miR-143-3p stimulated cardiomyocytes to re-enter the cell cycle. On the contrary, overexpression of miR-143-3p inhibited the mitosis of cardiomyocytes and abrogated cardiomyocyte mitosis induced by exposure to melatonin. Moreover, Yap and Ctnnd1 were identified as the target genes of miR-143-3p. In cardiomyocytes, inhibition of miR-143-3p increased the protein expression of Yap and Ctnnd1. Melatonin treatment also enhanced Yap and Ctnnd1 protein levels. Furthermore, Yap siRNA and Ctnnd1 siRNA attenuated melatonin-induced cell cycle re-entry of cardiomyocytes. We showed that the effect of melatonin on cardiomyocyte proliferation and cardiac regeneration was impeded by the melatonin receptor inhibitor luzindole. Silencing miR-143-3p abrogated the inhibition of luzindole on cardiomyocyte proliferation. In addition, both MT1 and MT2 siRNA could cancel the beneficial effects of melatonin on cardiomyocyte proliferation. Collectively, the results suggest that melatonin induces cardiomyocyte proliferation and heart regeneration after MI by regulating the miR-143-3p/Yap/Ctnnd1 signaling pathway, providing a new therapeutic strategy for cardiac regeneration.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Melatonina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Cateninas/metabolismo , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Corazón/efectos de los fármacos , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Regeneración/efectos de los fármacos , Proteínas Señalizadoras YAP , Catenina delta
8.
Arch Gynecol Obstet ; 303(4): 1075-1087, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33128584

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are involved in a variety of biological processes, including tumorigenesis. However, the exact role and molecular mechanisms of circ_0000043 in endometrial carcinoma (EC) remain largely unknown. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to determine the expression levels of circ_0000043, microRNA-1271-5p (miR-1271-5p) and catenin delta 1 (CTNND1). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell proliferation, cell apoptosis and cell cycle distribution, respectively. Cell migration and invasion were assessed by transwell assay. Western blot assay was performed to examine the protein expression of matrix metalloproteinase 2 (MMP2), MMP9 and CTNND1. The interaction between miR-1271-5p and circ_0000043 or CTNND1 was predicted by starBase and confirmed by dual-luciferase reporter assay. The mice xenograft model was established to investigate the role of circ_0000043 in vivo. RESULTS: Circ_0000043 and CTNND1 were highly expressed and miR-1271-5p was lowly expressed in EC tissues and cells. Knockdown of circ_0000043 inhibited the progression of EC by inhibiting cell proliferation, migration, invasion and tumor growth (in vivo) and promoting apoptosis. MiR-1271-5p was a direct target of circ_0000043 and its inhibition reversed the inhibitory effect of circ_0000043 knockdown on the progression of EC cells. In addition, CTNND1 was a downstream target of miR-1271-5p, and miR-1271-5p overexpression inhibited EC cell proliferation, migration and invasion and induced apoptosis by targeting CTNND1. Moreover, circ_0000043 positively regulated CTNND1 expression by sponging miR-1271-5p. CONCLUSION: Circ_0000043 knockdown inhibited the progression of EC by regulating miR-1271-5p/CTNND1 axis, which might provide a promising circRNA-targeted therapy for EC.


Asunto(s)
Cateninas/metabolismo , Neoplasias Endometriales/genética , MicroARNs/metabolismo , ARN Circular/análisis , Animales , Ciclo Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa , Catenina delta
9.
Cancer Cell Int ; 20: 340, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760218

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have been certified to be involved in the occurrence and growth of diverse cancers, including CRC. The purpose of the research was to explore the effects of lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) on proliferation, migration, invasion, and apoptosis in CRC cells and its mechanism. METHODS: The levels of KCNQ1OT1 and miR-329-3p were examined by quantitative real-time polymerase chain reaction (qRT-PCR) in CRC tissues and cells. The mRNA and protein levels of catenin delta-1 (CTNND1) were measured by qRT-PCR and western blot analysis, respectively. The targets of KCNQ1OT1 and miR-329-3p were predicted by online software and confirmed by luciferase reporter assay. The cell proliferation, migration, invasion, and apoptosis were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), transwell, and apoptosis assay. The expression levels of CyclinD1, Bcl-2, MMP9, Cleaved-casp-3, and E-cadherin in SW480 and LS1034 cells were gauged by western blot analysis. Xenograft tumor model was structured to prove the biological role of KCNQ1OT1 of CRC in vivo. RESULTS: The levels of KCNQ1OT1 and CTNND1 were significantly increased in CRC tissues and cells. Knockdown of KCNQ1OT1 suppressed proliferation, migration, invasion, and induced apoptosis in CRC cells. Conversely, CTNND1 overexpression reversed the impact of KCNQ1OT1 knockdown on CRC cells. Moreover, CTNND1 was verified as a direct target of miR-329-3p, and miR-329-3p could specially bind to KCNQ1OT1. Also, the down-regulation of KCNQ1OT1 triggered the CRC progress by up-regulating CTNND1 expression in CRC cells. Besides, KCNQ1OT1 knockdown inhibited CRC tumor growth through the miR-329-3p/CTNND1 axis in vivo. CONCLUSION: Our results indicated that KCNQ1OT1 could positively regulate CTNND1 expression by sponging miR-329-3p, thereby boosting the progression of CRC. Our findings provided the underlying therapy targets for CRC.

10.
Proc Natl Acad Sci U S A ; 114(44): E9280-E9289, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078376

RESUMEN

Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway.


Asunto(s)
Movimiento Celular/fisiología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Células HeLa , Humanos , Ubiquitinación/fisiología , Pez Cebra/metabolismo , Pez Cebra/fisiología
11.
Cancer Cell Int ; 19: 345, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31889897

RESUMEN

BACKGROUND: Glioblastoma has been seen as the most common malignancy of brain tumor. Emerging reports has claimed that SNHG29 (LRRC75A-AS1) was involved in several biological processes via modulation of signaling pathway, and served as an malignant facilitatorin osteosarcoma. However, the specific role of SNHG29 in glioblastoma remains unknown. METHODS: RT-qPCR and microarray were operated to measure genes expression. Western blot was performed to examine protein expression. CCK-8 and colony formation assays were used to evaluate cell proliferation. Cell migration was tested by transwell assay. Nuclear-cytoplasmic fractionation was conducted to locate SNHG29. The binding capacity of miR-223-3p to SNHG29 or CTNND1 3'UTR was verified by RIP and luciferase reporter assay. RESULTS: SNHG29 presented high expression in glioblastoma to boost cell proliferation, migration and EMT process. In addition, miR-223-3p was validated to bind with SNHG29 after prediction and screening. Furthermore, miR-223-3p was proved to be a negative regulator for its target CTNND1. Then, the inhibition on cell proliferation, migration and EMT process resulted from SNHG29 knockdown was recovered by CTNND1 overexpression. At last, the inhibitive impacts on cell proliferation, migration and EMT process of CTNND1 deficiency was abrogated by LiCl. CONCLUSIONS: In conclusion, SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/ß-catenin signaling pathway, offering a potential therapeutic point for glioblastoma patients.

12.
Development ; 141(16): 3177-87, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25038041

RESUMEN

Apical constriction (AC) is a widely utilized mechanism of cell shape change whereby epithelial cells transform from a cylindrical to conical shape, which can facilitate morphogenetic movements during embryonic development. Invertebrate epithelial cells undergoing AC depend on the contraction of apical cortex-spanning actomyosin filaments that generate force on the apical junctions and pull them toward the middle of the cell, effectively reducing the apical circumference. A current challenge is to determine whether these mechanisms are conserved in vertebrates and to identify the molecules responsible for linking apical junctions with the AC machinery. Utilizing the developing mouse eye as a model, we have uncovered evidence that lens placode AC may be partially dependent on apically positioned myosin-containing filaments associated with the zonula adherens. In addition we found that, among several junctional components, p120-catenin genetically interacts with Shroom3, a protein required for AC during embryonic morphogenesis. Further analysis revealed that, similar to Shroom3, p120-catenin is required for AC of lens cells. Finally, we determined that p120-catenin functions by recruiting Shroom3 to adherens junctions. Together, these data identify a novel role for p120-catenin during AC and further define the mechanisms required for vertebrate AC.


Asunto(s)
Cateninas/fisiología , Regulación del Desarrollo de la Expresión Génica , Cristalino/embriología , Proteínas de Microfilamentos/fisiología , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Animales , Citoesqueleto/metabolismo , Eliminación de Gen , Genotipo , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Morfogénesis , Miosina Tipo IIB no Muscular/metabolismo , Factores de Tiempo , Catenina delta
13.
Mol Carcinog ; 56(7): 1733-1742, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28218467

RESUMEN

The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) targets multiple organs for tumorigenesis in the rat, including the colon and the skin. PhIP-induced skin tumors were subjected to mutation screening, which identified genetic changes in Hras (7/40, 17.5%) and Tp53 (2/40, 5%), but not in Ctnnb1, a commonly mutated gene in PhIP-induced colon tumors. Despite the absence of Ctnnb1 mutations, ß-catenin was overexpressed in nuclear and plasma membrane fractions from PhIP-induced skin tumors, coinciding with loss of p120-catenin from the plasma membrane, and the appearance of multiple p120-catenin-associated bands in the nuclear extracts. Real-time RT-PCR revealed that p120-catenin isoforms 1 and 4 were upregulated in PhIP-induced skin tumors, whereas p120-catenin isoform 3 was expressed uniformly, compared with adjacent normal-looking tissue. In human epidermoid carcinoma and colon cancer cells, transient transfection of p120-catenin isoform 1A enhanced the viability and cell invasion index, whereas transient transfection of p120-catenin isoform 4A increased cell viability and cell proliferation. Knockdown of p120-catenin revealed a corresponding reduction in the expression of ß-catenin and a transcriptionally regulated target, Ccnd1/Cyclin D1. Co-immunoprecipitation experiments identified associations of ß-catenin with p120-catenin isoforms in PhIP-induced skin tumors and human cancer cell lines. The results are discussed in the context of therapeutic strategies that might target different p120-catenin isoforms, providing an avenue to circumvent constitutively active ß-catenin arising via distinct mechanisms in skin and colon cancer.


Asunto(s)
Apoptosis , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/patología , Cateninas/metabolismo , Proliferación Celular , Neoplasias Colorrectales/patología , Neoplasias Cutáneas/patología , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Cateninas/antagonistas & inhibidores , Cateninas/genética , Movimiento Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Imidazoles/toxicidad , Invasividad Neoplásica , Isoformas de Proteínas , ARN Interferente Pequeño/genética , Ratas , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/metabolismo , Células Tumorales Cultivadas , Catenina delta
14.
J Clin Lab Anal ; 31(3)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27565611

RESUMEN

OBJECTIVE: To investigate the relationship between 755 T>G polymorphisms in the CTNND1 gene, which is associated with the risk of pancreatic carcinoma in Chinese. METHODS: CTNND1 755 T>G genotypes were determined by PCR-RFLP in 122 pancreatic carcinoma patients and 180 healthy controls matched for age and sex, who did not receive radiotherapy or chemotherapy for newly diagnosed and histopathologically confirmed pancreatic carcinoma. RESULTS: In control subjects, the frequency of T/T and G/T genotypes, and T and G alleles was 79.4%, 17.2%, 88.1%, and 11.9%, respectively. The distribution of genotypes and allelotypes in the pancreatic carcinoma patients was significantly different from that in the controls (P = 0.007, P = 0.012). Combined GG and GT genotypes were found to have a higher OR in male pancreatic carcinoma patients and the group under the age of 70 years (males: OR, 1.409; 95%CI, 0.912~1.921; under 70 years: OR 1.626; 95% CI, 0.878~2.312). This study also showed a distinct difference in the distribution of P120ctn and single nucleotide polymorphisms (SNPs) between Chinese and Canadian (11.9% vs. 3.9%, P = 0.008). CONCLUSION: CTNND1 755 T>G polymorphism may be a stratification marker to predict the susceptibility to pancreatic carcinoma, at least in Chinese. CTNND1 promoter SNPs is diverse in ethnic populations.


Asunto(s)
Pueblo Asiatico/genética , Cateninas/genética , Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleótido Simple/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Catenina delta , Neoplasias Pancreáticas
15.
J Pathol ; 236(1): 53-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25470111

RESUMEN

Increasing evidence supports the association of catenin-δ1 (CTNND1, p120ctn) with tumour development and progression. However, the mechanism and clinical significance of CTNND1 deregulation in gastric cancer remain unknown. The expression level and cellular localization of CTNND1 were determined by immunohistochemistry in 126 human gastric cancer and 50 non-tumourous tissues. The cellular localization of CTNND1 and epithelial cadherin (E-cadherin) were detected by immunofluorescence. Cell proliferation, apoptosis, migration and invasion assays were performed to assess the effect of CTNND1 cDNA or CTNND1 siRNA transfection on gastric cancer cells. Luciferase assay, western blot analysis and in vivo assays were used to determine whether CTNND1 could be regulated by miR-145. The results demonstrate that the cytoplasmic localization of CTNND1 protein, rather than expression level, was indicative of higher clinical stage, positive lymph node metastasis and poorer prognosis in gastric cancers. CTNND1 could promote gastric cancer cell migration and invasion with little effect on cellular proliferation and apoptosis. CTNND1 was proved to be a direct target gene for miR-145. Besides suppressing cytoplasmic CTNND1 expression, miR-145 could recover the membranous localization of CTNND1 and E-cadherin. We conclude that cytoplasmic CTNND1 can serve as an independent prognostic factor for patients with gastric cancers. MiR-145 inhibits invasion of gastric cancer cells not only by down-regulating cytoplasmic CTNND1 expression but also by inducing the translocation of CTNND1 and E-cadherin from the cytoplasm to the cell membrane through down-regulating N-cadherin.


Asunto(s)
Cateninas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Metástasis Linfática/patología , MicroARNs/metabolismo , Neoplasias Gástricas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Metástasis Linfática/genética , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Catenina delta
16.
J Cancer ; 15(2): 317-331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169514

RESUMEN

Background: Immunotherapy has greatly changed the treatment of advanced non-small cell lung cancer (NSCLC). Anoikis is a programmed cell death process associated with cancer. However, the correlation between anoikis-related genes and the tumor microenvironment (TME) features and immunotherapeutic outcome in NSCLC has not been fully explored. Methods: The bulk and single-cell transcriptome data of NSCLC were downloaded from TCGA and GEO databases. The distribution of anoikis-related genes on different cell types at the single-cell level was analyzed, and these genes specifically expressed by tumor cells and immunotherapy-related were further extracted. Next, the candidate gene CTNND1 was identified and its correlations with the TME features and immunotherapeutic outcome in NSCLC were explored in multiple public cohorts. Finally, an in-house cohort was used to determine the CTNND1 expression and immuno-correlation in NSCLC. Results: At single-cell atlas, we found that anoikis-related genes expressed specifically in tumor cells of NSCLC. By intersecting anoikis-related genes, immunotherapy-associated genes, and the genes expressed in tumor cells, we obtained a special biomarker CTNND1. In addition, cell-cell communication analysis revealed that CTNND1+ tumor cells communicated with immune subpopulations frequently. Moreover, we found that high expression of CTNND1 was related to immuno-suppressive status of NSCLC. The expression of CTNND1 and its immuno-correlation were also validated, and the results showed that CTNND1 was highly expressed in NSCLC tissues and tumors with high CTNND1 expression accompanied with low CD8+ T cells infiltration. Conclusions: Overall, our study reported that CTNND1 can be considered as a novel biomarker for the predication of immunotherapeutic responses and a potential target for NSCLC therapy.

17.
Int J Biol Macromol ; 262(Pt 2): 129981, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336316

RESUMEN

The interchange of DNA sequences between genes may occur because of chromosomal rearrangements leading to the formation of chimeric genes. These chimeric genes have been linked to various cancers, accumulated significant interest in recent times. We used paired-end RNA-seq. data of four CRC and one normal sample generated from our previous study. The STAR-Fusion pipeline was utilized to identify the fusion genes unique to CRC. The in-silico identified fusion gene(s) were explored for their diagnostic, prognostic and therapeutic biomarker potential using TCGA-datasets, then validated through PCR and DNA sequencing. Further, cell line-based studies were performed to gain functional insights of the novel fusion transcript CTNND1-RAB6A, which was amplified in one sample. Sequencing revealed that there was a total loss of the CTNND1 gene, whereas RAB6A retained its coding sequence. Further, RAB6A was functionally characterized for its oncogenic potential in HCT116 cell line. RAB6A under-expression was found to be significantly associated with increased cell migration and is proposed to be regulated via the RAB6A-ECR1-Liprin-α axis. We conclude that RAB6A gene may play significant role in CRC oncogenesis, and could be used as a potential biomarker and therapeutic target in future for better management of a subset of CRCs harbouring this fusion.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias del Colon/genética , Células HCT116 , Movimiento Celular/genética , Biomarcadores
18.
Front Pediatr ; 11: 1180381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274823

RESUMEN

Background: The p120-ctn protein, encoded by CTNND1, is involved in intercellular connections and regulates epithelial-mesenchymal transformation. CTNND1 mutations can lead to blepharocheilodontic syndrome (BCDS). Increasing evidence shows that although BCDS mainly manifests as craniofacial and oral deformities, it can also present as congenital heart disease, limb deformities, and neurodevelopmental disorders. Case description: We report a prenatal case of a major cardiac malformation at 24+3 weeks of gestation. Ultrasound examination revealed a hypoplastic left ventricular, aortic coarctation, and a ventricular septal defect. Genetic analysis of the fetal tissues showed the presence of a novel mutation in CTNND1 (NM_001085458.2: c.566_c.567insG; p.Pro190fs*15), which may lead to premature termination of protein coding, while both the parents harbored wild-type CTNND1. To date, only 15 CTNND1 mutations have been reported in 19 patients worldwide, of which approximately 31% (6/19) had a cardiac phenotype. Conclusion: To the best of our knowledge, this is the first case report of fetal complicated cardiac malformations caused by this CTNND1 mutation. Our findings provide new clinical references for prenatal diagnosis and suggest an important role for CTNND1 in early cardiac development.

19.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686589

RESUMEN

The most well-characterized hereditary form of gastric cancer is hereditary diffuse gastric cancer (HDGC), an autosomal dominant syndrome characterized by an increased risk of diffuse gastric and lobular breast cancer. HDGC is predominantly caused by germline pathogenic variants in the CDH1 gene, and more rarely in the CTNNA1 gene. Furthermore, the International Gastric Cancer Linkage Consortium (IGCLC) guidelines do not clarify whether or not mixed gastric cancer (with a diffuse component) should be considered in the HDGC genetic testing criteria. We aimed to evaluate the contribution of CTNNA1 and CTNND1 germline variants to HDGC. Additionally, we also intended to compare the frequencies of CDH1 and CTNNA1 (and eventually CTNND1) germline variants between patients with diffuse and mixed gastric carcinomas to evaluate if genetic testing for these genes should or should not be considered in patients with the latter. We analyzed the CDH1 gene in 67 cases affected with early-onset/familial mixed gastric carcinomas and the CTNNA1 and CTNND1 genes in 208 cases with diffuse or mixed gastric cancer who had tested negative for CDH1 pathogenic germline variants. A deleterious CTNNA1 germline variant was found in 0.7% (1/141) of diffuse gastric cancer patients meeting the 2020 IGCLC criteria, as compared to the rate of 2.8% of CDH1 deleterious variants found by us in this setting. No deleterious variants were found in CTNND1, but six variants of uncertain significance were identified in this gene. We did not find any pathogenic CDH1, CTNNA1 or CTNND1 variant in index patients with early-onset/familial mixed gastric cancer, so there is no evidence that supports including this tumor type in the testing criteria for germline variants in these genes. The role of the CTNND1 gene in inherited gastric cancer predisposition is still unclear.

20.
Cells ; 12(21)2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-37947657

RESUMEN

Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.


Asunto(s)
Enfermedades de la Retina , Enfermedades Vasculares , Humanos , Niño , Vitreorretinopatías Exudativas Familiares/metabolismo , Células Endoteliales/metabolismo , Tetraspaninas/metabolismo , Enfermedades de la Retina/metabolismo , Enfermedades Vasculares/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA