Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32619424

RESUMEN

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Asunto(s)
Memoria Inmunológica/fisiología , Linfoma de Células B Grandes Difuso/patología , Proteínas Nucleares/genética , Células Precursoras de Linfocitos B/inmunología , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cromatina/química , Cromatina/metabolismo , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Co-Represor 2 de Receptor Nuclear/química , Co-Represor 2 de Receptor Nuclear/metabolismo , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transcripción Genética
2.
Cell ; 171(2): 481-494.e15, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985567

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Asunto(s)
Sistemas CRISPR-Cas , Perfilación de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Células Cultivadas , Exoma , Femenino , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Rituximab/administración & dosificación
3.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33098766

RESUMEN

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , G-Cuádruplex , Síndrome de Inmunodeficiencia con Hiper-IgM/etiología , Síndrome de Inmunodeficiencia con Hiper-IgM/metabolismo , Mutación , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biología Computacional/métodos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM/diagnóstico , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inmunofenotipificación , Activación de Linfocitos/genética , Linfoma de Células B Grandes Difuso/etiología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Transgénicos
4.
Proc Natl Acad Sci U S A ; 120(52): e2301155120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109544

RESUMEN

The protease MALT1 promotes lymphocyte activation and lymphomagenesis by cleaving a limited set of cellular substrates, most of which control gene expression. Here, we identified the integrin-binding scaffold protein Tensin-3 as a MALT1 substrate in activated human B cells. Activated B cells lacking Tensin-3 showed decreased integrin-dependent adhesion but exhibited comparable NF-κB1 and Jun N-terminal kinase transcriptional responses. Cells expressing a noncleavable form of Tensin-3, on the other hand, showed increased adhesion. To test the role of Tensin-3 cleavage in vivo, mice expressing a noncleavable version of Tensin-3 were generated, which showed a partial reduction in the T cell-dependent B cell response. Interestingly, human diffuse large B cell lymphomas and mantle cell lymphomas with constitutive MALT1 activity showed strong constitutive Tensin-3 cleavage and a decrease in uncleaved Tensin-3 levels. Moreover, silencing of Tensin-3 expression in MALT1-driven lymphoma promoted dissemination of xenografted lymphoma cells to the bone marrow and spleen. Thus, MALT1-dependent Tensin-3 cleavage reveals a unique aspect of the function of MALT1, which negatively regulates integrin-dependent B cell adhesion and facilitates metastatic spread of B cell lymphomas.


Asunto(s)
Caspasas , Linfoma de Células B Grandes Difuso , Ratones , Humanos , Animales , Adulto , Tensinas/genética , Caspasas/metabolismo , FN-kappa B/metabolismo , Adhesión Celular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Linfoma de Células B Grandes Difuso/genética , Integrinas
5.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367665

RESUMEN

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinogénesis , Resistencia a Antineoplásicos , Linfoma de Células B Grandes Difuso , MicroARNs , Proteínas Proto-Oncogénicas c-met , ARN Largo no Codificante , Rituximab , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , MicroARNs/genética , MicroARNs/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Resistencia a Antineoplásicos/genética , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-met/metabolismo
6.
Genes Chromosomes Cancer ; 63(1): e23211, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897298

RESUMEN

High-grade B-cell lymphoma (HGBL)/diffuse large B-cell lymphoma (DLBCL) with rearrangements (R) in MYC and BCL2 and/or BCL6 are correlated with poor prognosis. Little is known about the impact of other genetic alterations (gain (G) or amplification (A)) of these genes. The aim of the study was to investigate whether we can identify new prognostic subgroups. Fluorescence in situ hybridization (FISH) results from 169 HGBL/DLBCL were retrospectively categorized into: (1) concurrent MYC-R and BCL2-R and/or BCL6-R-samples with MYC-R and BCL2-R (+/- BCL6-R); n = 21, and HGBL/DLBCL with MYC-R and BCL6-R; n = 11; (2) concurrent R and G/A in MYC and BCL2 and/or BCL6 called "alternative HGBL/DLBCL"-samples with (n = 16) or without (n = 6) BCL2 involvement; (3) BCL2 and/or BCL6 alterations without MYC involvement (n = 35); (4) concurrent G/A in MYC and BCL2 and/or BCL6 without R (n = 25); and (5) "No alterations" (n = 55). Patients with HGBL/DLBCL-MYC/BCL2 and "alternative" HGBL/DLBCL (with BCL2 involvement) had significantly worse survival rates compared to the "no alterations" group. G/A of these genes in the absence of rearrangements did not show any prognostic significance. HGBL/DLBCL with MYC-R and BCL6-R without BCL2 involvement showed a better survival rate compared to HGBL/DLBCL-MYC/BCL2. According to immunohistochemistry, "double/triple" expression (DEL/TEL) did not show a significantly worse outcome compared to absent DEL/TEL. This study highlights the continued value of FISH assessment of MYC, BCL2, and BCL6 in the initial evaluation of HGBL/DLBCL with different survival rates between several genetic subgroups.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Reordenamiento Génico , Hibridación Fluorescente in Situ , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-myc/genética , Estudios Retrospectivos
7.
J Cell Mol Med ; 28(1): e18041, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987202

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is difficult to treat due to the high recurrence rate and therapy intolerance, so finding potential therapeutic targets for DLBCL is critical. FK506-binding protein 3 (FKBP3) contributes to the progression of various cancers and is highly expressed in DLBCL, but the role of FKBP3 in DLBCL and its mechanism are not clear. Our study demonstrated that FKBP3 aggravated the proliferation and stemness of DLBCL cells, and tumour growth in a xenograft mouse model. The interaction between FKBP3 and parkinsonism associated deglycase (PARK7) in DB cells was found using co-immunoprecipitation assay. Knockdown of FKBP3 enhanced the degradation of PARK7 through increasing its ubiquitination modification. Forkhead Box O3 (FOXO3) belongs to the forkhead family of transcription factors and inhibits DLBCL, but the underlying mechanism has not been reported. We found that FOXO3 bound the promoter of FKBP3 and then suppressed its transcription, eventually weakening DLBCL. Mechanically, FKBP3 activated Wnt/ß-catenin signalling pathway mediated by PARK7. Together, FKBP3 increased PARK7 and then facilitated the malignant phenotype of DLBCL through activating Wnt/ß-catenin pathway. These results indicated that FKBP3 might be a potential therapeutic target for the treatment of DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , beta Catenina , Humanos , Ratones , Animales , beta Catenina/metabolismo , Proteína Desglicasa DJ-1/genética , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Wnt/genética , Fenotipo , Linfoma de Células B Grandes Difuso/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión a Tacrolimus/metabolismo
8.
J Cell Mol Med ; 28(2): e18046, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037859

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid subtype. However, unsatisfactory survival outcomes remain a major challenge, and the underlying mechanisms are poorly understood. N6-methyladenosine (m6A), the most common internal modification of eukaryotic mRNA, participates in cancer pathogenesis. In this study, m6A-associated long non-coding RNAs (lncRNA) were retrieved from publicly available databases. Univariate, LASSO, and multivariate Cox regression analyses were performed to establish an m6A-associated lncRNA model specific to DLBCL. Kaplan-Meier curves, principal component analysis, functional enrichment analyses and nomographs were used to study the risk model. The underlying clinicopathological characteristics and drug sensitivity predictions against the model were identified. Risk modelling based on the three m6A-associated lncRNAs was an independent prognostic factor. By regrouping patients using our model-based method, we could differentiate patients more accurately for their response to immunotherapy. In addition, prospective compounds that can target DLBCL subtypes have been identified. The m6A-associated lncRNA risk-scoring model developed herein holds implications for DLBCL prognosis and clinical response prediction to immunotherapy. In addition, we used bioinformatic tools to identify and verify the ceRNA of the m6A-associated lncRNA ELFN1-AS1/miR-182-5p/BCL-2 regulatory axis. ELFN1-AS1 was highly expressed in DLBCL and DLBCL cell lines. ELFN1-AS1 inhibition significantly reduced the proliferation of DLBCL cells and promoted apoptosis. ABT-263 inhibits proliferation and promotes apoptosis in DLBCL cells. In vitro and in vivo studies have shown that ABT-263 combined with si-ELFN1-AS1 can inhibit DLBCL progression.


Asunto(s)
Adenina , Compuestos de Anilina , Linfoma de Células B Grandes Difuso , MicroARNs , ARN Largo no Codificante , Sulfonamidas , Humanos , Adenina/análogos & derivados , Biomarcadores , Linfoma de Células B Grandes Difuso/genética , MicroARNs/genética , Estudios Prospectivos , ARN Largo no Codificante/genética
9.
Apoptosis ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008196

RESUMEN

Cuprotosis related genes (CRGs) have been proved to be potential therapeutic targets for coronavirus disease 2019 (COVID-19) and cancer, but their immune and molecular mechanisms in COVID-19 infection in Diffuse Large B-cell Lymphoma (DLBC/DLBCL) patients are rarely reported. Our research goal is first to screen the key CRGs in COVID-19 through univariate analysis, machine learning and clinical samples. Secondly, we determined the expression and prognostic role of key CRGs in DLBCL through pan-cancer analysis. We validated the expression levels and prognosis using multiple datasets and independent clinical samples and validated the functional role of key CRGs in DLBCL through cell experiments. Finally, we validated the expression levels of CRGs in COVID-19 infected DLBCL patients samples and analyzed their common pathways in COVID-19 and DLBCL. The results show that synuclein-alpha (SNCA) is the common key differential gene of COVID-19 and DLBCL. DLBCL cells confirm that high expression of SNCA can significantly promote cell apoptosis and significantly inhibit the cycle progression of DLBCL. High expression of SNCA can regulate the binding of major histocompatibility complexes (MHCs) and T cell receptor (TCR) by regulating immune infiltration of Dendritic cells, effectively enhancing T cell-mediated anti-tumor immunity and clearing cancer cells. In conclusion, SNCA may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our study provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL patients.

10.
Apoptosis ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581529

RESUMEN

Since the discovery of copper induces cell death(cuprotosis) in 2022, it has been one of the biggest research hotspots. cuprotosis related genes (CRGs) has been demonstrated to be a potential therapeutic target for cancer, however, the molecular mechanism of CRGs in coronavirus disease 2019 (COVID-19) infected in DLBCL patients has not been reported yet. Therefore, our research objective is first to elucidate the mechanism and role of CRGs in COVID-19. Secondly, we conducted univariate and multivariate analysis and machine learning to screen for CRGs with common expression differences in COVID-19 and DLBCL. Finally, the functional role and immune mechanism of genes in DLBCL were confirmed through cell experiments and immune analysis. The research results show that CRGs play an important role in the occurrence and development of COVID-19. Univariate analysis and machine learning confirm that dihydrolipoamide dehydrogenase (DLD) is the common key gene of COVID-19 and DLBCL. Inhibiting the expression of DLD can significantly inhibit the cycle progression and promote cell apoptosis of DLBCL cells and can target positive regulation of Lysine-specific demethylase 1 (LSD1, also known as KDM1A) to inhibit the proliferation of DLBCL cells and promote cell apoptosis. The immune analysis results show that high-expression of DLD may reduce T cell-mediated anti-tumor immunity by regulating immune infiltration of CD8 + T cells and positively regulating immune checkpoints LAG3 and CD276. Reducing the expression of DLD can effectively enhance T cell-mediated anti-tumor immunity, thereby clearing cancer cells and preventing cancer growth. In conclusion, DLD may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our research provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL.

11.
Clin Immunol ; 265: 110297, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909971

RESUMEN

Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoma characterized by constitutive NF-κB activation, but whether miR-17∼92 contributes to this activation remains unclear. Herein, we sought to evaluate the role of miR-17∼92 in the process of NF-κB activation in ABC-DLBCL. We found that the expression of miR-17∼92 primary transcript was positively correlated with NF-κB activity, miR-17∼92 activated the NF-κB signaling in ABC-DLBCL, and its over-expression promoted ABC-DLBCL cell growth, accelerated cell G1 to S phase transition and enhanced cell resistance to NF-κB inhibitor. Importantly, miR-17∼92 promoted NF-κB activation through directly targeting multiple ubiquitin-editing regulators to lead to increase the K63-linked polyubiquitination and decrease the K48-linked polyubiquitination of RIP1 complex in ABC-DLBCL. We further found that miR-17∼92 selectively activated IκB-α and NF-κB p65 but not NF-κB p52/p100, and high miR-17∼92 expression was also associated with poorer outcome in ABC-DLBCL patients. Overall, our results showed that miR-17∼92 selectively activated the canonical NF-κB signaling via targeting ubiquitin-editing regulators to lead to constitutively NF-κB activation and poorer outcome in ABC-DLBCL. These findings uncovered an innovative function of miR-17∼92 and previously unappreciated regulatory mechanism of NF-κB activation in ABC-DLBCL. Targeting miR-17∼92 may thus provide a novel bio-therapeutic strategy for ABC-DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , MicroARNs , FN-kappa B , Ubiquitinación , Humanos , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Línea Celular Tumoral , Transducción de Señal , Masculino , Femenino , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Proliferación Celular/genética , ARN Largo no Codificante
12.
Br J Haematol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632873

RESUMEN

Primary gastric diffuse large B-cell lymphoma (PG-DLBCL) accounts for the majority of extra-nodal DLBCL. Even so, literature is lacking on early, localised presentations. We studied a cohort of patients with stage I disease, diagnosed between 2006 and 2018, from six centres between Australia, Canada and Denmark. Our goal was to characterise outcomes, review treatment and investigate the role of interim positron emission tomography (iPET). Thirty-seven eligible patients were identified. The median duration of follow-up was 42.2 months. All received chemoimmunotherapy with 91.9% (n = 34) given rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP). 35.1% (n = 13) underwent consolidative radiotherapy. Eighteen patients were H. pylori positive and 11 had the documentation of H. pylori eradication therapy. The 4-year progression-free survival and overall survival of R-CHOP was 88% (95% CI: 71-95) and 91% (95% CI: 75-97) respectively. All patients who achieved a partial metabolic response or complete metabolic response on iPET went on to achieve complete response at the end of treatment. R-CHOP-based therapy with iPET assessment appears to offer favourable outcomes, with radiotherapy and H. pylori eradication therapy implemented on a case-by-case basis.

13.
Br J Haematol ; 204(4): 1132-1134, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38251726

RESUMEN

Treatment of newly diagnosed diffuse large B-cell lymphoma with rituximab and CHOP (R-CHOP) has been largely unchanged for the last two decades. The Guideline by Fox et al. provides new evidence-based therapeutic strategies informed by positive results of randomised clinical trials. Commentary on: Fox et al. The management of newly diagnosed large B-cell lymphoma: A British Society for Haematology Guideline. Br J Haematol 2024; 204:1178-1192.


Asunto(s)
Linfoma de Células B Grandes Difuso , Nivel de Atención , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/diagnóstico , Prednisona/uso terapéutico , Rituximab/uso terapéutico , Resultado del Tratamiento , Vincristina/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Br J Haematol ; 204(2): 389-390, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37964473

RESUMEN

Personalized treatment options for subsets of patients with DLBCL are beginning to emerge. Caracciolo et al. explore UMG1, an epitope of CD43 as a potential target for certain patients with DLBCL, and demonstrate promising preclinical activity of an Anti-UMG1-antibody. Commentary on: Caracciolo et al. UMG1/CD3ε-bispecific T-cell engager (BTCE) redirects T-cell cytotoxicity against diffuse large B-cell lymphoma (DLBCL). Br J Haematol 2024;204:555-560.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/patología , Inmunoterapia , Linfocitos T
15.
Br J Haematol ; 205(1): 17-19, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38813657

RESUMEN

The prognosis of r/r DLBCL has changed substantially over the past decade due to the introduction of T-cell-activating therapies. Besides generating a new curative perspective for a proportion of r/r DLBCL, chimeric antigen receptor T-cell therapy and bispecific antibodies are generating new unmet needs. The report by Grigg and colleagues now shows that glofitamab-refractory, CD20-negative patients represent a new unmet medical need requiring therapeutic targets other than CD20 and novel therapies to reduce the risk of CD20 loss. Commentary on: Grigg et al. Relapse after glofitamab has a poor prognosis, and rates of CD20 loss are high. Br J Haematol 2024;205:122-126.


Asunto(s)
Antígenos CD20 , Humanos , Antígenos CD20/inmunología , Linfoma de Células B Grandes Difuso/terapia , Recurrencia , Anticuerpos Biespecíficos/uso terapéutico
16.
Br J Haematol ; 204(2): 555-560, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37963444

RESUMEN

UMG1 is a unique epitope of CD43, not expressed by normal cells and tissues of haematopoietic and non-haematopoietic origin, except thymocytes and a minority (<5%) of peripheral blood T lymphocytes. By immunohistochemistry analysis of tissue microarray and pathology slides, we found high UMG1 expression in 20%-24% of diffuse large B-cell lymphomas (DLBCLs), including highly aggressive BCL2high and CD20low cases. UMG1 membrane expression was also found in DLBCL bone marrow-infiltrating cells and established cell lines. Targeting UMG1 with a novel asymmetric UMG1/CD3ε-bispecific T-cell engager (BTCE) induced redirected cytotoxicity against DLBCL cells and was synergistic with lenalidomide. We conclude that UMG1/CD3ε-BTCE is a promising therapeutic for DLBCLs.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfocitos T , Humanos , Linfocitos T/metabolismo , Linfoma de Células B Grandes Difuso/patología , Inmunohistoquímica
17.
Cancer Immunol Immunother ; 73(2): 29, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280007

RESUMEN

EBV+ diffuse large B cell lymphoma (DLBCL) not otherwise specified (NOS) is a new entity confirmed by the World Health Organization (WHO) in 2017. In this new entity, the virus may contribute to a tolerogenic microenvironment. Traces of the virus have been described in DLBCL with more sensitive methods, in cases that were originally diagnosed as negative. The aim of this study was to analyze the expression of immune response genes in the tumor microenvironment to disclose the role of the virus and its traces in DLBCL. In 48 DLBCL cases, the expression of immune response genes and the presence of molecules that induce tolerance, such as TIM3, LAG3 and PDL1 by immunohistochemistry (IHC), were studied. To broaden the study of the microenvironment, tumor-associated macrophages (TMAs) were also explored. No significant differences were observed in the expression of immune response genes in the EBV+ DLBCL and those cases that were EBV- DLBCL but that exhibited viral traces, assessed by ViewRNA assay. Only the EBV+ DLBCL cases displayed a significantly higher increase in the expression of CD8 and cytotoxic T cells detected by gene expression analysis, and of PDL1 in tumor cells and in the expression of CD68 in the tumor microenvironment detected by IHC, not observed in those cases with viral traces. The increase in CD8 and cytotoxic T cells, PDL1 and CD68 markers only in EBV+ DLBCL may indicate that traces of viral infection might not have influence in immune response markers.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Humanos , Herpesvirus Humano 4 , Linfoma de Células B Grandes Difuso/patología , Linfocitos T Citotóxicos/metabolismo , Tolerancia Inmunológica , Microambiente Tumoral
18.
Crit Rev Microbiol ; : 1-17, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38288575

RESUMEN

Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying H. pylori-induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention. In recent years, there has been speculation about contagious agents causing persistent inflammation and encouraging B-lymphocyte transition along with lymphomagenesis. MALT lymphoma associated with chronic H. pylori infection, apart from two other central associated lymphomas - Burkitt's Lymphoma and DLBCL, is well studied. Owing to the increasing colonization of H. pylori in the host gut and its possible action in the development of B-cell lymphoma, this review aims to summarize the existing reports on different B-cell lymphomas' probable association with H. pylori infections; also emphasizing the function of the organism in lymphomagenesis; including its interaction with the host, pathogen and host-specific factors, and tumor microenvironment.

19.
Histopathology ; 84(3): 525-538, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37965677

RESUMEN

AIMS: Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is not recognized as a separate entity by the current classification systems. Here we define and highlight its distinctive clinical presentation, morphology, phenotype, gene expression profile (GEP), and molecular genetics. METHODS: We collected 27 respective cases and investigated their phenotype, performed gDNA panel sequencing covering 172 genes, and carried out fluorescence in situ hybridization to evaluate MYC, BCL2, and BCL6 translocations. We attempted to genetically subclassify cases using the Two-step classifier and performed GEP for cell-of-origin subtyping and in silico comparison to uncover up- and downregulated genes as opposed to other DLBCL. RESULTS: Most cases (n = 22) were germinal centre B-cell-like (GCB) by immunohistochemistry and all by GEP. Additionally, PB-DLBCL had a mutational profile similar to follicular lymphoma and nodal GCB-DLBCL, with the exception of more frequent TP53 and B2M mutations. The GEP of PB-DLBCL was unique, and the frequency of BCL2 rearrangements was lower compared to nodal GCB-DLBCL. The Two-step classifier categorized eight of the cases as EZB, three as ST2, and one as MCD. CONCLUSION: This study comprehensively characterizes PB-DLBCL as a separate entity with distinct clinical and morpho-molecular features. These insights may aid in developing tailored therapeutic strategies and shed light on its pathogenesis.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Hibridación Fluorescente in Situ , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Mutación , Centro Germinal/patología , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética
20.
Eur J Nucl Med Mol Imaging ; 51(8): 2308-2319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38467921

RESUMEN

PURPOSE: Chimeric antigen receptor (CAR) T-cell therapy has been confirmed to benefit patients with relapsed and/or refractory diffuse large B-cell lymphoma (DLBCL). It is important to provide precise and timely predictions of the efficacy and toxicity of CAR T-cell therapy. In this study, we evaluated the value of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) combining with clinical indices and laboratory indicators in predicting outcomes and toxicity of anti-CD19 CAR T-cell therapy for DLBCL patients. METHODS: Thirty-eight DLBCL patients who received CAR T-cell therapy and underwent [18F]FDG PET/CT within 3 months before (pre-infusion) and 1 month after CAR T-cell infusion (M1) were retrospectively reviewed and regularly followed up. Maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), clinical indices, and laboratory indicators were recorded at pre-infusion and M1 time points, and changes in these indices were calculated. Progression-free survival (PFS) and overall survival (OS) were as endpoints. Based on the multivariate Cox regression analysis, two predictive models for PFS and OS were developed and evaluated the efficiency. Pre-infusion indices were subjected to predict the grade of cytokine release syndrome (CRS) resulting from toxic reactions. RESULTS: For survival analysis at a median follow-up time of 18.2 months, patients with values of international prognostic index (IPI), SUVmax at M1, and TLG at M1 above their optimal thresholds had a shorter PFS (median PFS: 8.1 months [IPI ≥ 2] vs. 26.2 months [IPI < 2], P = 0.025; 3.1 months [SUVmax ≥ 5.69] vs. 26.8 months [SUVmax < 5.69], P < 0.001; and 3.1 months [TLG ≥ 23.79] vs. 26.8 months [TLG < 23.79], P < 0.001). In addition, patients with values of SUVmax at M1 and ∆SUVmax% above their optimal thresholds had a shorter OS (median OS: 12.6 months [SUVmax ≥ 15.93] vs. 'not reached' [SUVmax < 15.93], P < 0.001; 32.5 months [∆SUVmax% ≥ -46.76] vs. 'not reached' [∆SUVmax% < -46.76], P = 0.012). Two novel predictive models for PFS and OS were visualized using nomogram. The calibration analysis and the decision curves demonstrated good performance of the models. Spearman's rank correlation (rs) analysis revealed that the CRS grade correlated strongly with the pre-infusion SUVmax (rs = 0.806, P < 0.001) and moderately with the pre-infusion TLG (rs = 0.534, P < 0.001). Multinomial logistic regression analysis revealed that the pre-infusion value of SUVmax correlated with the risk of developing a higher grade of CRS (P < 0.001). CONCLUSION: In this group of DLBCL patients who underwent CAR T-cell therapy, SUVmax at M1, TLG at M1, and IPI were independent risk factors for PFS, and SUVmax at M1 and ∆SUVmax% for OS. Based on these indicators, two novel predictive models were established and verified the efficiency for evaluating PFS and OS. Moreover, pre-infusion SUVmax correlated with the severity of any subsequent CRS. We conclude that metabolic parameters measured using [18F]FDG PET/CT can identify DLBCL patients who will benefit most from CAR T-cell therapy, and the value before CAR T-cell infusion may predict its toxicity in advance.


Asunto(s)
Fluorodesoxiglucosa F18 , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/terapia , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Pronóstico , Inmunoterapia Adoptiva/efectos adversos , Estudios Retrospectivos , Adulto Joven , Receptores Quiméricos de Antígenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA