Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Adv Exp Med Biol ; 1241: 77-100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32383117

RESUMEN

A variety of endogenous and exogenous factors induce chemical and structural alterations in cellular DNA in addition to the errors occurring throughout DNA synthesis. These types of DNA damage are cytotoxic, miscoding or both and are believed to be at the origin of cancer and other age-related diseases. A human cell, aside from nuclear DNA, contains thousands of copies of mitochondrial DNA (mtDNA), a double-stranded, circular molecule of 16,569 bp. It has been proposed that mtDNA is a critical target of reactive oxygen species: by-products of oxidative phosphorylation that are generated in the organelle during aerobic respiration. Indeed, oxidative damage to mtDNA is more extensive and persistent as compared to that to nuclear DNA. Although transversions are the hallmark of mutations induced by reactive oxygen species, paradoxically, the majority of mtDNA mutations that occur during ageing and cancer are transitions. Furthermore, these mutations show a striking strand orientation bias: T→C/G→A transitions preferentially occur on the light strand, whereas C→T/A→G on the heavy strand of mtDNA. Here, we propose that the majority of mtDNA progenies, created after multiple rounds of DNA replication, are derived from the heavy strand only, owing to asymmetric replication of the DNA strand anchored to the inner membrane via the D-loop structure.


Asunto(s)
Reparación del ADN , ADN Mitocondrial/genética , Mitocondrias/genética , Mutagénesis , Vertebrados , Animales , Humanos , Vertebrados/genética
2.
Clin Chim Acta ; 558: 117899, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574942

RESUMEN

Acute myeloid leukemia (AML) is a hematologic malignancy with a high recurrence rate and poor long-term prognosis. DNA excision repair systems, such as base excision repair (BER) and nucleotide excision repair (NER), play a major role in maintaining genomic stability and integrity. Further intensive investigations are necessary to uncover additional AML prognosis loci. In this study, we analyzed 16 candidate SNPs within NER and BER pathways in AML patients. Our results showed the GT/GG genotype of the XPC rs2228001 polymorphism was significantly associated with WBC count in dominant models (OR = 0.41, 95 % CI = 0.18-0.96, p = 0.039). Additionally, the rs25487 and rs3213245 SNPs in the XRCC1 gene, in both co-dominant and dominant models, were significantly associated with PLT count in AML (p < 0.05). The GG genotype of rs1130409 in APEX1 was more prone to adverse cytogenetics in both the codominant and recessive models (p < 0.05). Furthermore, the GA genotypes of ERCC8 rs158572 in codominant model was significantly correlated with refractory group (p < 0.05). ERCC8 rs158572 and XRCC1 rs3213245 in both codominant and dominant models were significantly correlated with the MRD positivity (p < 0.05). Kaplan-Meier analysis revealed an link between overall survival (OS) and the co-dominant, dominant, and recessive models of rs2228001 in XPC. Additionally, patients with the GG and GT/GG genotype in the co-dominant, dominant model and recessive model in XPC rs2228001 exhibited significantly longer survival (p < 0.05). Multivariate Cox analyses indicated that rs2228001 in both co-dominant and dominant models were independent favorable factors impacting patient OS (OR < 1). Our findings suggest that genetic polymorphisms in DNA excision repair pathway genetic polymorphisms contribute to the chemosensitivity and prognosis of acute myeloid leukemia.


Asunto(s)
Reparación por Escisión , Leucemia Mieloide Aguda , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Pronóstico
3.
Aging (Albany NY) ; 14(13): 5299-5310, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35748794

RESUMEN

Cockayne syndrome (CS) is a rare progeroid disorder characterized by growth failure, microcephaly, photosensitivity, and premature aging, mainly arising from biallelic ERCC8 (CS-A) or ERCC6 (CS-B) variants. In this study we describe siblings suffering from classical Cockayne syndrome but without photosensitivity, which delayed a clinical diagnosis for 16 years. By whole-exome sequencing we identified the two novel compound heterozygous ERCC8 variants c.370_371del (p.L124Efs*15) and c.484G>C (p.G162R). The causality of the ERCC8 variants, of which one results in a frameshift and the other affects the WD3 domain, was tested and confirmed by a rescue experiment investigating DNA repair in H2O2 treated patient fibroblasts. Structural modeling of the p.G162R variant indicates effects on protein-protein interaction. This case shows the importance to test for ERCC6 and ERCC8 variants even if patients do not present with a complete CS phenotype.


Asunto(s)
Síndrome de Cockayne , Pueblo Asiatico , Síndrome de Cockayne/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Humanos , Peróxido de Hidrógeno , Fenotipo , Hermanos , Factores de Transcripción/genética
4.
Front Oncol ; 12: 819790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223501

RESUMEN

Xeroderma Pigmentosum (XP), an autosomal recessive disorder characterized by ultraviolet radiation-induced abnormalities of DNA excision and repair pathways is associated with early development of cutaneous cancers. Intracellular oxidative stress has also been proposed as a contributor to the occurrence of skin cancers. However, little is known about the possible augmentative contributions of chronic inflammation, immune suppression and oxidative stress to the pathogenesis of malignancies associated with other subtypes of XP. This has been addressed in the current study, focused on the measurement of systemic biomarkers of inflammation, immune dysfunction and oxidative damage in XP patients, consisting of XP-C, XP-D and XP-E cases, including those XP-C cases who had already developed multiple skin malignancies. The inflammatory biomarker profile measured in XP patients and healthy control subjects included the cytokines, interleukins (ILs)-2, -4, -6, -10, interferon-γ (IFN- γ) and tumor-necrosis factor-α (TNF-α), the acute phase reactant, C-reactive protein (CRP), and cotinine (as an objective indicator of smoking status). Immune suppression was detected according to the levels of five soluble inhibitory immune checkpoint proteins (CTLA-4, PD-1, PD-L1, LAG-3 and TIM-3), as well as those of vitamin D, while oxidative stress was determined according to the circulating levels of the DNA adduct, 8-hydroxy-2-deoxyguanosine (8-OH-dG). These various biomarkers were measured in plasma using immunofluorimetric, nephelometric and ELISA procedures. Significant elevations in IL-6 (P<0.01) and TNF-α (P<0.0001), but none of the other cytokines, as well as increased levels of all five soluble inhibitory immune checkpoints (P=0.032-P=0.0001) were detected in the plasma of the XP patients. C-reactive protein and vitamin D were increased and decreased, respectively (both P<0.0001), while only one participant had an elevated level of plasma cotinine. Surprisingly, the levels of 8-OH-dG were significantly (P=0.0001) lower in the group of XP patients relative to a group of healthy control subjects. The findings of increased levels of pro-inflammatory cytokines and, in particular, those of the soluble immune checkpoints, in the setting of decreased vitamin D and moderately elevated levels of CRP in XP patients suggest a possible secondary role of ongoing, inflammatory stress and immune suppression in the pathogenesis of XP-associated malignancies.

5.
Genetics ; 209(2): 357-366, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29844089

RESUMEN

The persistence of hereditary traits over many generations testifies to the stability of the genetic material. Although the Watson-Crick structure for DNA provided a simple and elegant mechanism for replication, some elementary calculations implied that mistakes due to tautomeric shifts would introduce too many errors to permit this stability. It seemed evident that some additional mechanism(s) to correct such errors must be required. This essay traces the early development of our understanding of such mechanisms. Their key feature is the cutting out of a section of the strand of DNA in which the errors or damage resided, and its replacement by a localized synthesis using the undamaged strand as a template. To the surprise of some of the founders of molecular biology, this understanding derives in large part from studies in radiation biology, a field then considered by many to be irrelevant to studies of gene structure and function. Furthermore, genetic studies suggesting mechanisms of mismatch correction were ignored for almost a decade by biochemists unacquainted or uneasy with the power of such analysis. The collective body of results shows that the double-stranded structure of DNA is critical not only for replication but also as a scaffold for the correction of errors and the removal of damage to DNA. As additional discoveries were made, it became clear that the mechanisms for the repair of damage were involved not only in maintaining the stability of the genetic material but also in a variety of biological phenomena for increasing diversity, from genetic recombination to the immune response.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN/genética , Animales , Disparidad de Par Base , Emparejamiento Base , ADN/química , Replicación del ADN , Humanos
6.
Endocr Relat Cancer ; 24(8): 427-443, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28634180

RESUMEN

The genetics behind predisposition to small intestinal neuroendocrine tumors (SI-NETs) is largely unknown, but there is growing awareness of a familial form of the disease. We aimed to identify germline mutations involved in the carcinogenesis of SI-NETs. The strategy included next-generation sequencing of exome- and/or whole-genome of blood DNA, and in selected cases, tumor DNA, from 24 patients from 15 families with the history of SI-NETs. We identified seven candidate mutations in six genes that were further studied using 215 sporadic SI-NET patients. The result was compared with the frequency of the candidate mutations in three control cohorts with a total of 35,688 subjects. A heterozygous variant causing an amino acid substitution p.(Gly396Asp) in the MutY DNA glycosylase gene (MUTYH) was significantly enriched in SI-NET patients (minor allele frequencies 0.013 and 0.003 for patients and controls respectively) and resulted in odds ratio of 5.09 (95% confidence interval 1.56-14.74; P value = 0.0038). We also found a statistically significant difference in age at diagnosis between familial and sporadic SI-NETs. MUTYH is involved in the protection of DNA from mutations caused by oxidative stress. The inactivation of this gene leads to specific increase of G:C- > T:A transversions in DNA sequence and has been shown to cause various cancers in humans and experimental animals. Our results suggest that p.(Gly396Asp) in MUTYH, and potentially other mutations in additional members of the same DNA excision-repair pathway (such as the OGG1 gene) might be involved in driving the tumorigenesis leading to familial and sporadic SI-NETs.


Asunto(s)
ADN Glicosilasas/genética , Neoplasias Intestinales/genética , Tumores Neuroendocrinos/genética , Adulto , Anciano , ADN Glicosilasas/metabolismo , Femenino , Mutación de Línea Germinal , Humanos , Neoplasias Intestinales/metabolismo , Masculino , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA