Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37264926

RESUMEN

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Inflamación , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
2.
J Transl Med ; 22(1): 178, 2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369471

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment, and the underlying mechanism has not been fully elucidated. This study aimed to clarify the role and mechanism of Human antigen R (HuR) as a therapeutic target for CRPC progression. METHODS: HuR was knocked out by Cas9 or inhibited by the HuR-specific inhibitor KH-3 in CRPC cell lines and in a mouse xenograft model. The effects of HuR inhibition on tumour cell behaviors and signal transduction were examined by proliferation, transwell, and tumour xenograft assays. Posttranscriptional regulation of BCAT1 by HuR was determined by half-life and RIP assays. RESULTS: HuR knockout attenuated the proliferation, migration, and invasion of PC3 and DU145 cells in vitro and inhibited tumour progression in vivo. Moreover, BCAT1 was a direct target gene of HuR and mediated the oncogenic effect of HuR on CRPC. Mechanistically, HuR directly interacted with BCAT1 mRNA and upregulated BCAT1 expression by increasing the stability and translation of BCAT1, which activated ERK5 signalling. Additionally, the HuR-specific inhibitor KH-3 attenuated CRPC progression by disrupting the HuR-BCAT1 interaction. CONCLUSIONS: We confirmed that the HuR/BCAT1 axis plays a crucial role in CRPC progression and suggest that inhibiting the HuR/BCAT1 axis is a promising therapeutic approach for suppressing CRPC progression.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Transaminasas/genética
3.
Microvasc Res ; 153: 104667, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38307406

RESUMEN

Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using in vitro and in vivo models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In in-vivo experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 µg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.


Asunto(s)
Aterosclerosis , Silimarina , Humanos , Animales , Ratones , Molécula 1 de Adhesión Intercelular , Transducción de Señal , Células Cultivadas , Silimarina/efectos adversos , Glucemia , Factor de von Willebrand , Lipoproteínas LDL/toxicidad , Lipoproteínas LDL/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/inducido químicamente , Peso Corporal
4.
Microbiol Immunol ; 68(10): 359-370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39073705

RESUMEN

Statins, such as lovastatin, have been known to inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Statins were reported to moderately suppress hepatitis C virus (HCV) replication in cultured cells harboring HCV RNA replicons. We report here using an HCV cell culture (HCVcc) system that high concentrations of lovastatin (5-20 µg/mL) markedly enhanced the release of HCV infectious particles (virion) in the culture supernatants by up to 40 times, without enhancing HCV RNA replication, HCV protein synthesis, or HCV virion assembly in the cells. We also found that lovastatin increased the phosphorylation (activation) level of extracellular-signal-regulated kinase 5 (ERK5) in both the infected and uninfected cells in a dose-dependent manner. The lovastatin-mediated increase of HCV virion release was partially reversed by selective ERK5 inhibitors, BIX02189 and XMD8-92, or by ERK5 knockdown using small interfering RNA (siRNA). Moreover, we demonstrated that other cholesterol-lowering statins, but not dehydrolovastatin that is incapable of inhibiting HMG-CoA reductase and activating ERK5, enhanced HCV virion release to the same extent as observed with lovastatin. These results collectively suggest that statins markedly enhance HCV virion release from infected cells through HMG-CoA reductase inhibition and ERK5 activation.


Asunto(s)
Hepacivirus , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Lovastatina , Proteína Quinasa 7 Activada por Mitógenos , Virión , Replicación Viral , Humanos , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Lovastatina/farmacología , Replicación Viral/efectos de los fármacos , Virión/efectos de los fármacos , Virión/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Fosforilación , Liberación del Virus/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Línea Celular , Hepatitis C/virología , Hepatitis C/metabolismo , Hepatitis C/tratamiento farmacológico , Antivirales/farmacología
5.
Exp Cell Res ; 427(1): 113584, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004948

RESUMEN

MTHFD1L, a key enzyme of folate metabolism, is seldom reported in cancer. In this study, we investigate the role of MTHFD1L in the tumorigenicity of esophageal squamous cell carcinoma (ESCC). ESCC tissue microarrays (TMAs) containing 177 samples from 109 patients were utilized to evaluate whether MTHFD1L expression, determined using immunohistochemical analysis, is a prognostic indicator for ESCC patients. The function of MTHFD1L in the migration and invasion of ESCC cells was studied with wound healing, Transwell, and three-dimensional spheroid invasion assays in vitro and a lung metastasis mouse model in vivo. The mRNA microarrays and Ingenuity pathway analysis (IPA) were used to explore the downstream of MTHFD1L. Elevated expression of MTHFD1L in ESCC tissues was significantly associated with poor differentiation and prognosis. These phenotypic assays revealed that MTHFD1L significantly promote the viability and metastasis of ESCC cell in vivo and in vitro. Further detailed analyses of the molecular mechanism demonstrated that the ESCC progression driven by MTHFD1L was through up-regulation ERK5 signaling pathways. These findings reveal that MTHFD1L is positively associated with the aggressive phenotype of ESCC by activating ERK5 signaling pathways, suggesting that MTHFD1L is a new biomarker and a potential molecular therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Línea Celular Tumoral , Transducción de Señal , Fenotipo , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542254

RESUMEN

Many of the biological processes of the cell, from its structure to signal transduction, involve protein-protein interactions. On this basis, our aim was to identify cellular proteins that interact with ERK5, a serine/threonine protein kinase with a key role in tumor genesis and progression and a promising therapeutic target in many tumor types. Using affinity chromatography, immunoprecipitation, and mass spectrometry techniques, we unveiled an interaction between ERK5 and the mitochondrial glutaminase GLS in pancreatic tumor cells. Subsequent co-immunoprecipitation and immunofluorescence studies supported this interaction in breast and lung tumor cells as well. Genetic approaches using RNA interference techniques and CRISPR/Cas9 technology demonstrated that the loss of ERK5 function led to increased protein levels of GLS isoforms (KGA/GAC) and a concomitant increase in their activity in tumor cells. It is well known that the tumor cell reprograms its intermediary metabolism to meet its increased metabolic needs. In this sense, mitochondrial GLS is involved in the first step of glutamine catabolism, one of the main energy sources in the context of cancer. Our data suggest that ERK5 contributes to the regulation of tumor cell energy metabolism via glutaminolysis.


Asunto(s)
Glutaminasa , Neoplasias Pulmonares , Humanos , Glutaminasa/genética , Glutaminasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal , Interferencia de ARN , Neoplasias Pulmonares/metabolismo , Glutamina/metabolismo , Línea Celular Tumoral
7.
Curr Issues Mol Biol ; 45(7): 6154-6169, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37504304

RESUMEN

Extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase (MAPK) family, is involved in key cellular processes. However, overexpression and upregulation of ERK5 have been reported in various cancers, and ERK5 is associated with almost every biological characteristic of cancer cells. Accordingly, ERK5 has become a novel target for the development of anticancer drugs as inhibition of ERK5 shows suppressive effects of the deleterious properties of cancer cells. Herein, we report the synthesis and identification of a novel ERK5 inhibitor, MHJ-627, and verify its potent anticancer efficacy in a yeast model and the cervical cancer HeLa cell line. MHJ-627 successfully inhibited the kinase activity of ERK5 (IC50: 0.91 µM) and promoted the mRNA expression of tumor suppressors and anti-metastatic genes. Moreover, we observed significant cancer cell death, accompanied by a reduction in mRNA levels of the cell proliferation marker, proliferating cell nuclear antigen (PCNA), following ERK5 inhibition due to MHJ-627 treatment. We expect this finding to serve as a lead compound for further identification of inhibitors for ERK5-directed novel approaches for oncotherapy with increased specificity.

8.
Cell Tissue Res ; 393(2): 281-296, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37256363

RESUMEN

The intestine of zebrafish consists of mucosa, muscularis and serosa. Intestinal epithelial cells (IECs) act as a physical and biochemical barrier to protect against invasion by external commensal bacteria. Cell junction is one of the crucial basis of the barrier function. When cell junctions were disrupted, intestinal permeability would be naturally impeded. Extracellular signal-regulated kinase 5 (ERK5), belonging to the Mitogen-activated protein kinase (MAPK) family, is involved in the normal physiological development of the cardiovascular system and nervous system. But the role of erk5 in intestinal morphogenesis and intestinal function is yet to know. Here, we showed that knockout of the erk5 in zebrafish larvae resulted in intestinal wall hypoplasia, including the thinned intestinal wall, reduced intestinal folds, and disrupted cell junctions. In addition, the intestinal permeability assay demonstrated that knockout of erk5 resulted in increased intestinal permeability. All of these showed that erk5 plays an essential role in the maintenance of intestinal barrier function. Thus, our data indicate that erk5 is a critical effector in intestinal morphogenesis and intestinal function, and dysfunction of erk5 would lead to intestinal diseases.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos , Pez Cebra , Animales , Pez Cebra/metabolismo , Intestinos , Células Epiteliales/metabolismo , Permeabilidad , Mucosa Intestinal/metabolismo
9.
Bioorg Med Chem ; 95: 117503, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37862935

RESUMEN

The extracellular signal-regulated kinase 5 (Erk5) signaling plays a crucial role in cancer, and regulating its activity may have potential in cancer chemotherapy. In this study, a series of novel 7-azaindole derivatives (4a-5o) were designed and synthesized. Their antitumor activities on human lung cancer A549 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining and colony formation assay. Among them, compounds 4a, 4 h, 5d and 5j exhibited good anti-proliferative activity with the IC50 values of 6.23 µg/mL, 8.52 µg/mL, 7.33 µg/mL and 4.56 µg/mL, respectively, equivalent to Erk5 positive control XMD8-92 (IC50 = 5.36 µg/mL). The results of structure-activity relationships (SAR) showed that double bond on the piperidine ring and N atoms at the N7 position of 7-azaindole was essential for their antiproliferative activity. Furthermore, compounds 4a and 5j exhibited good inhibition on Erk5 kinase through Western blot analysis and possible action site of compounds with Erk5 kinase was elucidated by molecular docking.


Asunto(s)
Antineoplásicos , Proteína Quinasa 7 Activada por Mitógenos , Humanos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Relación Estructura-Actividad , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular
10.
Bioorg Chem ; 140: 106748, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562314

RESUMEN

The practical and facile Mn(OAc)2-promoted [3+2] cycloaddition reaction of enaminones with isocyanoacetate was developed, that delivered a diversity of 3-aroyl pyrrole-2-carboxylic esters with broad substrates scope. The most of the newly synthesized compounds exhibit moderate antiproliferative activity against four cancer cells. Notably, compound 2n demonstrate the most potent activity with average IC50 values of 5.61 µM against four distinct cancer cell lines. Moreover, 2n exhibit favorable anti-migration activity and drug-like properties. The further investigation suggests that compound 2n possesses the ability to inhibit ERK5 activity and exhibits effective binding with the ERK5 protein, making it a promising candidate as a lead compound for a new class of ERK5 inhibitors discovery.


Asunto(s)
Antineoplásicos , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Pirroles/farmacología , Pirroles/química , Ciclización , Ésteres/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular
11.
Cell Mol Life Sci ; 79(10): 524, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123565

RESUMEN

Endometrial cancer (EC) is the most common type of gynecologic cancer in women of developed countries. Despite surgery combined with chemo-/radiotherapy regimens, overall survival of patients with high-risk EC tumors is poor, indicating a need for novel therapies. The MEK5-ERK5 pathway is activated in response to growth factors and to different stressors, including oxidative stress and cytokines. Previous evidence supports a role for the MEK5-ERK5 pathway in the pathology of several cancers. We investigated the role of ERK5 in EC. In silico analysis of the PanCancer Atlas dataset showed alterations in components of the MEK5-ERK5 pathway in 48% of EC patients. Here, we show that ERK5 inhibition or silencing decreased EGF-induced EC cell proliferation, and that genetic deletion of MEK5 resulted in EC impaired proliferation and reduced tumor growth capacity in nude mice. Pharmacologic inhibition or ERK5 silencing impaired NF-kB pathway in EC cells and xenografts. Furthermore, we found a positive correlation between ERK5 and p65/RELA protein levels in human EC tumor samples. Mechanistically, genetic or pharmacologic impairment of ERK5 resulted in downregulation of NEMO/IKKγ expression, leading to impaired p65/RELA activity and to apoptosis in EC cells and xenografts, which was rescued by NEMO/IKKγ overexpression. Notably, ERK5 inhibition, MEK5 deletion or NF-kB inhibition sensitized EC cells to standard EC chemotherapy (paclitaxel/carboplatin) toxicity, whereas ERK5 inhibition synergized with paclitaxel to reduce tumor xenograft growth in mice. Together, our results suggest that the ERK5-NEMO-NF-κB pathway mediates EC cell proliferation and survival. We propose the ERK5/NF-κB axis as new target for EC treatment.


Asunto(s)
Neoplasias Endometriales , FN-kappa B , Animales , Carboplatino , Proliferación Celular , Citocinas/metabolismo , Neoplasias Endometriales/genética , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Humanos , MAP Quinasa Quinasa 5/genética , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , Paclitaxel/farmacología , Paclitaxel/uso terapéutico
12.
Molecules ; 28(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37959868

RESUMEN

Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.


Asunto(s)
Ácido Hialurónico , Piel , Ácido Hialurónico/farmacología , Piel/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción
13.
Diabetes Obes Metab ; 24(9): 1721-1733, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35546452

RESUMEN

AIM: To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS: Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS: Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS: Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.


Asunto(s)
Factor de Crecimiento Epidérmico , Proteína Quinasa 7 Activada por Mitógenos , Animales , Proliferación Celular , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Femenino , Macrófagos/metabolismo , Ratones , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Factor de Crecimiento Placentario/metabolismo
14.
J Pharmacol Sci ; 148(3): 326-330, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35177212

RESUMEN

Extracellular signal-regulated protein kinase 5 (ERK5) has various physiological functions. However, the physiological role of ERK5 in the treatment of mice with an illicit drug such as methamphetamine (METH) remains unknown. We revealed that mice treated with METH showed hyperactivity, and increased p-ERK5 and Iba1 (a microglia marker) levels in the striatum. Additionally, these changes were inhibited by pretreatment with the ERK5 inhibitor BIX02189. The results suggest that METH-induced hyperactivity is associated with the activation of microglia via p-ERK5 in the striatum. Thus, the ERK5 pathway components in the central nervous system are potential therapeutic targets for preventing METH addiction.


Asunto(s)
Compuestos de Anilina/farmacología , Cuerpo Estriado/citología , Hipercinesia/inducido químicamente , Hipercinesia/tratamiento farmacológico , Indoles/farmacología , Metantelina/efectos adversos , Microglía/efectos de los fármacos , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/fisiología , Compuestos de Anilina/uso terapéutico , Animales , Proteínas de Unión al Calcio/metabolismo , Cuerpo Estriado/metabolismo , Indoles/uso terapéutico , Ratones , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Agitación Psicomotora , Trastornos Relacionados con Sustancias/prevención & control
15.
J Cell Mol Med ; 25(22): 10591-10603, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34655447

RESUMEN

Sorafenib is a multikinase inhibitor widely used in cancer therapy with an antitumour effect related to biological processes as proliferation, migration or invasion, among others. Initially designed as a Raf inhibitor, Sorafenib was later shown to also block key molecules in tumour progression such as VEGFR and PDGFR. In addition, sorafenib has been connected with key signalling pathways in cancer such as EGFR/EGF. However, no definitive clue about the molecular mechanism linking sorafenib and EGF signalling pathway has been established so far. Our data in HeLa, U2OS, A549 and HEK293T cells, based on in silico, chemical and genetic approaches demonstrate that the MEK5/ERK5 signalling pathway is a novel target of sorafenib. In addition, our data show how sorafenib is able to block MEK5-dependent phosphorylation of ERK5 in the Ser218/Tyr220, affecting the transcriptional activation associated with ERK5. Moreover, we demonstrate that some of the effects of this kinase inhibitor onto EGF biological responses, such as progression through cell cycle or migration, are mediated through the effect exerted onto ERK5 signalling pathway. Therefore, our observations describe a novel target of sorafenib, the ERK5 signalling pathway, and establish new mechanistic insights for the antitumour effect of this multikinase inhibitor.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Biomarcadores de Tumor , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular , Susceptibilidad a Enfermedades , Factor de Crecimiento Epidérmico/metabolismo , Citometría de Flujo , Humanos , Proteína Quinasa 7 Activada por Mitógenos/química , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/química , Transducción de Señal/efectos de los fármacos , Sorafenib/química , Relación Estructura-Actividad
16.
J Cell Mol Med ; 25(8): 3803-3815, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33621420

RESUMEN

The mechanisms of brain protection during ischaemic reperfusion injury induced by isoflurane (ISO) post-conditioning are unclear. Myocyte enhancement factor 2 (MEF2D) has been shown to promote neural survival in a variety of models, in which multiple survival and death signals converge on MEF2D and modulate its activity. Here, we investigated the effect of MEF2D on the neuroprotective effects of ISO post-conditioning on rats after cerebral ischaemia/reperfusion (I/R) injury. Rats underwent middle cerebral artery occlusion (MCAO) surgery with ischaemia for 90 minutes and reperfusion for 24-48 hours. After MCAO, neurological status was assessed at 12, 24 and 48 hours by the Modified Neurological Severity Score (mNSS) test. The passive avoidance test (PAT) was used to assess cognition function. Histological and neuropathological evaluations were performed with HE staining and Nissl's staining, respectively. We measured the expression of MEF2D, ERK5, GFAP and caspase-3 by immunofluorescent staining and Western blotting, and TUNEL staining to assess the severity of apoptosis in hippocampal CA1 area. We found that MEF2D was involved in nerve protection after I/R injury, and post-treatment of ISO significantly promoted the phosphorylation of ERK5, increased MEF2D transcriptional activity, inhibited the expression of caspase-3 and played a role of brain protection.


Asunto(s)
Apoptosis , Isquemia Encefálica/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Isoflurano/farmacología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Anestésicos por Inhalación/farmacología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Movimiento Celular , Proliferación Celular , Infarto de la Arteria Cerebral Media/complicaciones , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Proteína Quinasa 7 Activada por Mitógenos/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
17.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33876843

RESUMEN

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa 5/genética , Células MCF-7 , Proteínas Proto-Oncogénicas c-fos/genética , Neoplasias de la Mama Triple Negativas/genética
18.
J Neurosci Res ; 99(6): 1666-1688, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33729593

RESUMEN

Nervous systems are designed to become extra sensitive to afferent nociceptive stimuli under certain circumstances such as inflammation and nerve injury. How pain hypersensitivity comes about is key issue in the field since it ultimately results in chronic pain. Central sensitization represents enhanced pain sensitivity due to increased neural signaling within the central nervous system (CNS). Particularly, much evidence indicates that underlying mechanism of central sensitization is associated with the change of spinal neurons. Extracellular signal-regulated kinases have received attention as key molecules in central sensitization. Previously, we revealed the isoform-specific function of extracellular signal-regulated kinase 2 (Erk2) in spinal neurons for central sensitization using mice with Cre-loxP-mediated deletion of Erk2 in the CNS. Still, how extracellular signal-regulated kinase 5 (Erk5) in spinal neurons contributes to central sensitization has not been directly tested, nor is the functional relevance of Erk5 and Erk2 known. Here, we show that Erk5 and Erk2 in the CNS play redundant and/or distinct roles in central sensitization, depending on the plasticity context (cell types, pain types, time, etc.). We used male mice with Erk5 deletion specifically in the CNS and found that Erk5 plays important roles in central sensitization in a formalin-induced inflammatory pain model. Deletion of both Erk2 and Erk5 leads to greater attenuation of central sensitization in this model, compared to deletion of either isoform alone. Conversely, Erk2 but not Erk5 plays important roles in central sensitization in neuropathic pain, a type of chronic pain caused by nerve damage. Our results suggest the elaborate mechanisms of Erk signaling in central sensitization.


Asunto(s)
Hiperalgesia/genética , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Animales , Conducta Animal , Dolor Crónico/genética , Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Hiperalgesia/fisiopatología , Hiperalgesia/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Neuralgia/genética , Neuralgia/fisiopatología , Neuralgia/psicología , Neuronas/metabolismo , Dolor/fisiopatología , Dimensión del Dolor , Médula Espinal/citología , Médula Espinal/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(12): E2801-E2810, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507229

RESUMEN

Owing to the prevalence of tumor-associated macrophages (TAMs) in cancer and their unique influence upon disease progression and malignancy, macrophage-targeted interventions have attracted notable attention in cancer immunotherapy. However, tractable targets to reduce TAM activities remain very few and far between because the signaling mechanisms underpinning protumor macrophage phenotypes are largely unknown. Here, we have investigated the role of the extracellular-regulated protein kinase 5 (ERK5) as a determinant of macrophage polarity. We report that the growth of carcinoma grafts was halted in myeloid ERK5-deficient mice. Coincidentally, targeting ERK5 in macrophages induced a transcriptional switch in favor of proinflammatory mediators. Further molecular analyses demonstrated that activation of the signal transducer and activator of transcription 3 (STAT3) via Tyr705 phosphorylation was impaired in erk5-deleted TAMs. Our study thus suggests that blocking ERK5 constitutes a treatment strategy to reprogram macrophages toward an antitumor state by inhibiting STAT3-induced gene expression.


Asunto(s)
Macrófagos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Factor de Transcripción STAT3/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Polaridad Celular , Humanos , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 7 Activada por Mitógenos/genética , Fosforilación , Receptores de Superficie Celular/metabolismo , Factor de Transcripción STAT3/genética , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681917

RESUMEN

Malignant melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. We recently showed that the extracellular signal-regulated kinase 5 (ERK5), encoded by the MAPK7 gene, plays a pivotal role in melanoma by regulating cell functions necessary for tumour development, such as proliferation. Hedgehog-GLI signalling is constitutively active in melanoma and is required for proliferation. However, no data are available in literature about a possible interplay between Hedgehog-GLI and ERK5 pathways. Here, we show that hyperactivation of the Hedgehog-GLI pathway by genetic inhibition of the negative regulator Patched 1 increases the amount of ERK5 mRNA and protein. Chromatin immunoprecipitation showed that GLI1, the major downstream effector of Hedgehog-GLI signalling, binds to a functional non-canonical GLI consensus sequence at the MAPK7 promoter. Furthermore, we found that ERK5 is required for Hedgehog-GLI-dependent melanoma cell proliferation, and that the combination of GLI and ERK5 inhibitors is more effective than single treatments in reducing cell viability and colony formation ability in melanoma cells. Together, these findings led to the identification of a novel Hedgehog-GLI-ERK5 axis that regulates melanoma cell growth, and shed light on new functions of ERK5, paving the way for new therapeutic options in melanoma and other neoplasms with active Hedgehog-GLI and ERK5 pathways.


Asunto(s)
MAP Quinasa Quinasa 5/genética , Melanoma/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Neoplasias Cutáneas/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Inmunoprecipitación de Cromatina , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , MAP Quinasa Quinasa 5/metabolismo , Melanoma/metabolismo , Ratones , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Células 3T3 NIH , Receptor Patched-1/metabolismo , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA