Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 299(12): 105453, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956771

RESUMEN

The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.


Asunto(s)
Proteína I de Unión a Poli(A) , Próstata , Proteínas Proto-Oncogénicas c-ets , Proteína EWS de Unión a ARN , Humanos , Masculino , Línea Celular Tumoral , Núcleo Celular/metabolismo , Genoma Humano/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Activación Transcripcional , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
2.
Dev Biol ; 476: 137-147, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33775695

RESUMEN

The MAPK pathway is a major growth signal that has been implicated during the development of progenitors, neurons, and glia in the embryonic brain. Here, we show that the MAPK pathway plays an important role in the generation of distinct cell types from progenitors in the ventral telencephalon. Our data reveal that phospho-p44/42 (called p-ERK1/2) and the ETS transcription factor Etv5, both downstream effectors in the MAPK pathway, show a regional bias in expression during ventral telencephalic development, with enriched expression in the dorsal region of the LGE and ventral region of the MGE at E13.5 and E15.5. Interestingly, expression of both factors becomes more uniform in ventricular zone (VZ) progenitors by E18.5. To gain insight into the role of MAPK activity during progenitor cell development, we used a cre inducible constitutively active MEK1 allele (RosaMEK1DD/+) in combination with a ventral telencephalon enriched cre (Gsx2e-cre) or a dorsal telencephalon enriched cre (Emx1cre/+). Sustained MEK/MAPK activity in the ventral telencephalon (Gsx2e-cre; RosaMEK1DD/+) expanded dorsal lateral ganglionic eminence (dLGE) enriched genes (Gsx2 and Sp8) and oligodendrocyte progenitor cell (OPC) markers (Olig2, Pdgfrα, and Sox10), and also reduced markers in the ventral (v) LGE domain (Isl1 and Foxp1). Activation of MEK/MAPK activity in the dorsal telencephalon (Emx1cre/+; RosaMEK1DD/+) did not initially activate the expression of dLGE or OPC genes at E15.5 but ectopic expression of Gsx2 and OPC markers were observed at E18.5. These results support the idea that MAPK activity as readout by p-ERK1/2 and Etv5 expression is enriched in distinct subdomains of ventral telencephalic progenitors during development. In addition, sustained activation of the MEK/MAPK pathway in the ventral or dorsal telencephalon influences dLGE and OPC identity from progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Telencéfalo/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Ganglios/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción SOXE/genética , Telencéfalo/embriología , Telencéfalo/fisiología , Factores de Transcripción/metabolismo
3.
Development ; 144(13): 2428-2444, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28536097

RESUMEN

The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Bovinos , Elementos de Facilitación Genéticos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Intrones/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Neovascularización Fisiológica/genética , Regulador Transcripcional ERG/metabolismo , Pez Cebra/embriología
4.
J Cell Biochem ; 120(1): 848-860, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30161276

RESUMEN

Expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in human prostate cancers, and this is associated with more aggressive tumor behavior and a rapid progression to castrate-resistant disease. Multiple ETS1 isoforms with distinct biological activities have been characterized and in 44 matched nonmalignant and malignant human prostate specimens, messenger RNAs for two ETS1 isoforms, ETS1p51 and ETS1p42, were detected, with ETS1p51 levels significantly lower in prostate tumor compared to matched nonmalignant prostate tissues. In contrast, ETS1p51 protein, the only ETS1 isoform detected, was expressed at significantly higher levels in malignant prostate. Analysis of epithelial-to-mesenchymal transition (EMT)-associated genes regulated following overexpression of ETS1p51 in the LNCaP prostate cancer cell line predicted promotion of transforming growth factor ß (TGFß) signaling and of EMT. ETS1p51 overexpression upregulated cellular levels of the EMT transcriptional regulators, ZEB1 and SNAIL1, resulted in reduced expression of the mesenchymal marker vimentin with concomitantly elevated levels of claudin 1, an epithelial tight junction protein, and increased prostate cancer cell migration and invasion. ETS1p51-induced activation of the pro-EMT TGFß signaling pathway that was predicted in polymerase chain reaction arrays was verified by demonstration of elevated SMAD2 phosphorylation following ETS1p51 overexpression. Attenuation of ETS1p51 effects on prostate cancer cell migration and invasion by inhibition of TGFß pathway signaling indicated that ETS1p51 effects were in part mediated by induction of TGFß signaling. Thus, overexpression of ETS1p51, the predominant ETS1 isoform expressed in prostate tumors, promotes an EMT program in prostate cancer cells in part via activation of TGFß signaling, potentially accounting for the poor prognosis of ETS1-overexpressing prostate tumors.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Benzamidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Dioxoles/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Invasividad Neoplásica , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Proteína Smad2/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Transfección , Factor de Crecimiento Transformador beta1/farmacología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
5.
Mol Cancer ; 17(1): 136, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217192

RESUMEN

BACKGROUND: Androgen receptor (AR) is expressed in 60%~ 70% oestrogen receptor (ER)-negative breast cancer (BC) cases and promotes the growth of this cancer subtype. Expression of prostate-derived Ets factor (PDEF), a transcription factor, is highly restricted to epithelial cells in hormone-regulated tissues. MYC and its negative regulator MAD1 play an important role in BC progression. Previously, we found that PDEF expression is strongly correlated with AR expression. However, the relationship between AR and PDEF and the function of PDEF in ER-negative BC proliferation are unclear. METHODS: AR and PDEF expression in ER-negative BC tissues and cell lines was determined by performing immunohistochemistry or western blotting. Protein expression levels and location were analysed by performing western blotting, RT-qPCR and immunofluorescence staining. Co-immunoprecipitation and chromatin immunoprecipitation assays were performed to validate the regulation of AR-PDEF-MAD1-MYC axis. Moreover, the effect of AR and PDEF on BC progression was investigated both in vitro and in vivo. RESULTS: We found that PDEF was overexpressed in ER-negative BC tissues and cell lines and appeared to function as an oncogene. PDEF expression levels were strongly correlated with AR expression in ER-negative BC, and PDEF transcription was positively regulated by AR. PDEF upregulated MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative BC. Finally, we found that compared with the inhibition of AR expression alone, simultaneous inhibition of AR and PDEF expression further suppressed tumour proliferation both in vitro and in vivo. CONCLUSIONS: Our data highlight the role of the AR-PDEF-MAD1-MYC axis in BC progression and suggest that PDEF can be used as a new clinical therapeutic target for treating ER-negative BC.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Activación Transcripcional , Adulto , Anciano , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Proteolisis , ARN Interferente Pequeño/genética , Receptores de Estrógenos/deficiencia
6.
Histopathology ; 73(5): 819-831, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29969155

RESUMEN

AIMS: The mechanism of androgen receptor (AR) promoting tumour growth in oestrogen receptor-negative (ER- ) breast cancer (BC) is undetermined. Prostate-derived ETS factor (PDEF) is highly restricted to the hormone-regulated tissues of epithelial cells, such as those in the prostate, breast and other tissues. It has been demonstrated that PDEF expression is associated with AR in prostate cancer. In this research, we aimed to investigate the relationship between PDEF and AR in ER- BC. METHODS AND RESULTS: We immunohistochemically evaluated the correlation between PDEF and AR expression in 246 cases of ER- invasive BC, and investigated their relationship in ER- BC cell lines. The expression of PDEF was associated with the positive expression of AR (P < 0.001) and a worse survival rate (P = 0.006). PDEF+ tumours were significantly more often AR+ (P < 0.001). AR and PDEF were more often co-expressed and the series of AR+ PDEF+ (126 of 246, 51.2%) had a poor survival rate (P = 0.046). In Cox models, PDEF expression (P = 0.028) was an independent predictor for overall survival (OS). At the cellular protein and mRNA levels, our experiments also showed a statistically significant positive correlation between PDEF and AR, and that PDEF may be regulated by AR. CONCLUSIONS: PDEF is associated with markers of bad prognosis, supporting its role as a growth promoter in ER- BC. Our findings also provide evidence that PDEF is strongly correlated with AR expression in ER- breast cancer; it may be a downstream target gene of AR and a potential prognostic factor in ER- BC.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Proto-Oncogénicas c-ets/biosíntesis , Receptores Androgénicos/biosíntesis , Adulto , Neoplasias de la Mama/mortalidad , Femenino , Humanos , Persona de Mediana Edad , Pronóstico , Receptores de Estrógenos/biosíntesis
7.
Tumour Biol ; 39(5): 1010428317691688, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28468594

RESUMEN

Prostate-derived Ets factor (PDEF), a member of the Ets family of transcription factors, differs from other family members in its restricted expression in normal tissues and its unique DNA-binding motif. These interesting attributes coupled with its aberrant expression in cancer have rendered PDEF a focus of increasing interest by tumor biologists. This review provides a current understanding of the characteristics of PDEF expression and its role in breast cancer. The bulk of the evidence is consistent with PDEF overexpression in most breast tumors and an oncogenic role for this transcription factor in breast cancer. In addition, high PDEF expression in estrogen receptor-positive breast tumors showed significant correlation with poor overall survival in several independent cohorts of breast cancer patients. Together, these findings demonstrate PDEF to be an oncogenic driver of breast cancer and a biomarker of poor prognosis in this cancer. Based on this understanding and the limited expression of PDEF in normal human tissues, the development of PDEF-based therapeutics for prevention and treatment of breast cancer is also discussed.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama/genética , Proteínas Proto-Oncogénicas c-ets/biosíntesis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/biosíntesis , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas Proto-Oncogénicas c-ets/genética , Análisis de Supervivencia
8.
Cancers (Basel) ; 12(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143299

RESUMEN

The small-molecule E26 transformation-specific (ETS) factor inhibitor YK-4-279 was developed for therapy of ETS/EWS fusion-driven Ewing's sarcoma. Here we aimed to identify molecular factors underlying YK-4-279 responsiveness in ETS fusion-negative cancers. Cell viability screenings that deletion of P53 induced hypersensitization against YK-4-279 especially in the BRAFV600E-mutated colon cancer model RKO. This effect was comparably minor in the BRAF wild-type HCT116 colon cancer model. Out of all ETS transcription factor family members, especially ETS1 overexpression at mRNA and protein level was induced by deletion of P53 specifically under BRAF-mutated conditions. Exposure to YK-4-279 reverted ETS1 upregulation induced by P53 knock-out in RKO cells. Despite upregulation of p53 by YK-4-279 itself in RKOp53 wild-type cells, YK-4-279-mediated hyperphosphorylation of histone histone H2A.x was distinctly more pronounced in the P53 knock-out background. YK-4-279-induced cell death in RKOp53-knock-out cells involved hyperPARylation of PARP1, translocation of the apoptosis-inducible factor AIF into nuclei, and induction of mitochondrial membrane depolarization, all hallmarks of parthanatos. Accordingly, pharmacological PARP as well as BRAFV600E inhibition showed antagonistic activity with YK-4-279 especially in the P53 knock-out background. Taken together, we identified ETS factor inhibition as a promising strategy for the treatment of notoriously therapy-resistant p53-null solid tumours with activating MAPK mutations.

9.
Cancer Chemother Pharmacol ; 84(3): 609-620, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31297554

RESUMEN

PURPOSE: Approximately 30% oestrogen receptor alpha (ERα)-positive breast cancer (BC) patients exhibit intrinsic or recurrent resistance to adjuvant endocrine therapy with tamoxifen. The androgen receptor (AR) is expressed in about 90% of ERα-positive patients, with particularly high expression in tamoxifen-resistant tumours. Prostate-derived Ets factor (PDEF), which is a co-regulator of AR, plays a role in tamoxifen resistance in ERα-positive BC. The purpose of this research was to analyse the potential roles of AR, PDEF and ERα levels in the response to tamoxifen resistance in ERα-positive BC. METHODS: The nuclear AR:ERα and PDEF:ERα ratios were examined immunohistochemically in a cohort of 225 ERα-positive pre-menopausal BC patients who had received adjuvant tamoxifen therapy. RESULTS: For both AR:ERα and PDEF:ERα ratios, the optimal cutoff value was 2.0. Patients receiving adjuvant tamoxifen treatment who had a high AR:ERα (≥ 2.0) (HR = 3.90) or PDEF:ERα ratio (≥ 2.0) (HR = 2.77) had a beyond twofold increased risk of failure. Both the AR:ERα ratio (P = 0.001) and PDEF:ERα ratio (P = 0.002) were independently associated with the risk of tamoxifen treatment failure. Furthermore, both a high ratio of AR:ERα (≥ 2.0) and PDEF:ERα (≥ 2.0) were associated with shorter disease-free survival (DFS) and shorter disease-specific survival (DSS). In addition, both the AR:ERα ratio and PDEF:ERα ratio were independent predictors of DFS (both P < 0.0001) and DSS (P = 0.001 and P < 0.0001, respectively). CONCLUSIONS: AR:ERα and PDEF:ERα ratios are independent predictors of the response to conventional ERα-directed tamoxifen endocrine therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Recurrencia Local de Neoplasia/patología , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores Androgénicos/metabolismo , Tamoxifeno/uso terapéutico , Adulto , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
10.
Int J Biochem Cell Biol ; 79: 41-51, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27498191

RESUMEN

In humans, dysregulation of the sex determining gene SRY-box 9 (SOX9) leads to disorders of sex development (DSD). In mice, knock-out of Sox9 prior to sex determination leads to XY sex reversal, while Sox9 inactivation after sex determination leads to spermatogenesis defects. SOX9 specifies the differentiation and function of Sertoli cells from somatic cell precursors, which then orchestrate the development and maintenance of other testicular cell types, largely through unknown mechanisms. Here, we describe a novel testicular target gene of SOX9, Ets variant factor 5 (ETV5), a transcription factor responsible for maintaining the spermatogonial stem cell niche. Etv5 was highly expressed in wild-type XY but not XX mouse fetal gonads, with ETV5 protein localized in the Sertoli cells, interstitial cells and germ cells of the testis. In XY Sox9 knock-out gonads, Etv5 expression was strongly down-regulated. Similarly, knock-down of SOX9 in the human Sertoli-like cell line NT2/D1 caused a decrease in ETV5 gene expression. Transcriptomic analysis of NT2/D1 cells over-expressing SOX9 showed that ETV5 expression was increased in response to SOX9. Moreover, chromatin immunoprecipitation of these cells, as well as of embryonic mouse gonads, showed direct binding of SOX9 to ETV5 regulatory regions. We demonstrate that SOX9 was able to activate ETV5 expression via a conserved SOX site in the 5' regulatory region, mutation of which led to loss of activation. In conclusion, we present a novel target gene of SOX9 in the testis, and suggest that SOX9 regulation of ETV5 contributes to the control of male fertility.


Asunto(s)
Proteínas de Unión al ADN/genética , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción/genética , Animales , Línea Celular , Técnicas de Inactivación de Genes , Masculino , Ratones , Células de Sertoli/metabolismo , Regulación hacia Arriba
11.
Neoplasia ; 16(10): 801-13, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25379017

RESUMEN

ETS factors have been shown to be dysregulated in breast cancer. ETS factors control the expression of genes involved in many biological processes, such as cellular proliferation, differentiation, and apoptosis. FLI1 is an ETS protein aberrantly expressed in retrovirus-induced hematological tumors, but limited attention has been directed towards elucidating the role of FLI1 in epithelial-derived cancers. Using data mining, we show that loss of FLI1 expression is associated with shorter survival and more aggressive phenotypes of breast cancer. Gain and loss of function cellular studies indicate the inhibitory effect of FLI1 expression on cellular growth, migration, and invasion. Using Fli1 mutant mice and both a transgenic murine breast cancer model and an orthotopic injection of syngeneic tumor cells indicates that reduced Fli1 contributes to accelerated tumor growth. Global expression analysis and RNA-Seq data from an invasive human breast cancer cell line with over expression of either FLI1 and another ETS gene, PDEF, shows changes in several cellular pathways associated with cancer, such as the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathways. This study demonstrates a novel role for FLI1 in epithelial cells. In addition, these results reveal that FLI1 down-regulation in breast cancer may promote tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteína Proto-Oncogénica c-fli-1/genética , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética
12.
International Eye Science ; (12): 1667-1670, 2017.
Artículo en Zh | WPRIM | ID: wpr-641387

RESUMEN

Conjunctiva goblet cells are spread out within a stratified epithelium, and keep ocular surface homeostasis by secreting mucin.Previous research has shown conjunctiva goblet cells can secret mucin, remove debris and modulate ocular surface immune function.In this review, we will focus on biological characteristics of conjunctiva goblet cells and the effect of key factors SAM pointed domain Ets factor(SPDEF) on differentiation and function of conjunctiva goblet cells, and further understand relationship between goblet cells and eye health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA