Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9416-9426, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38662937

RESUMEN

The polyamide (PA) nanofiltration (NF) membrane has the potential to remove endocrine-disrupting compounds (EDCs) from water and wastewater to prevent risks to both the aquatic ecosystem and human health. However, our understanding of the EDC removal-water permeance trade-off by the PA NF membrane is still limited, although the salt selectivity-water permeance trade-off has been well illustrated. This constrains the precise design of a high-performance membrane for removing EDCs. In this study, we manipulated the PA nanostructures of NF membranes by altering piperazine (PIP) monomer concentrations during the interfacial polymerization (IP) process. The upper bound coefficient for EDC selectivity-water permeance was demonstrated to be more than two magnitudes lower than that for salt selectivity-water permeance. Such variations were derived from the different membrane-solute interactions, in which the water/EDC selectivity was determined by the combined effects of steric exclusion and the hydrophobic interaction, while the electrostatic interaction and steric exclusion played crucial roles in water/salt selectivity. We further highlighted the role of the pore number and residual groups during the transport of EDC molecules across the PA membrane via molecular dynamics (MD) simulations. Fewer pores decreased the transport channels, and the existence of residual groups might cause steric hindrance and dynamic disturbance to EDC transport inside the membrane. This study elucidated the trade-off phenomenon and mechanisms between EDC selectivity and water permeance, providing a theoretical reference for the precise design of PA NF membranes for effective removal of EDCs in water reuse.


Asunto(s)
Disruptores Endocrinos , Filtración , Membranas Artificiales , Nylons , Contaminantes Químicos del Agua , Disruptores Endocrinos/química , Nylons/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Agua/química , Nanoestructuras/química
2.
Environ Res ; 251(Pt 2): 118752, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513750

RESUMEN

Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17ß-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Fenoles , Vía de Señalización Wnt , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Disruptores Endocrinos/toxicidad , Vía de Señalización Wnt/efectos de los fármacos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Estrés Oxidativo/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 270: 115830, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141339

RESUMEN

Humans are exposed to environmental risks owing to the broad usage of endocrine disrupting compounds (EDCs). However, the subjective evaluation of risk levels and characteristics, as well as the variation in risk processing, have not been thoroughly examined. The objective was to understand the public's perception of the risk associated with human exposure to environmental EDCs and identify any variations in risk perception. In this pioneering study conducted within the distinctive social and cultural context of Malaysia, a developing nation, a quantitative analysis approach was employed to assess the subjective evaluation of risk levels and characteristics among the public while developing a risk perception model. Data gathered from surveys and questionnaires were analyzed to gather information on the public's perception of environmental and health issues pertaining to pesticides, hormones, plastics, medicines, and cosmetics. The analysis revealed that the majority of the public assessed the level of human exposure to environmental risks based on experiential processing, which was influenced by cognitive and affective variables. Interestingly, a higher proportion of individuals in the community had a low risk perception of environmental EDCs, surpassing the overall risk perception by 19.3%. Furthermore, the public showed significant awareness of environmental and health issues related to pesticides, hormones, and plastics but had a lesser inclination to acknowledge the vulnerability of humans to risks associated with medicines and cosmetics. These findings suggest that the public is likely to be exposed to environmental EDCs based on their current perceived risks, and that sociopsychological factors play a significant role in shaping perceptions and judgments. This understanding can inform the development of targeted risk management strategies and interventions to mitigate the potential harm caused by environmental EDCs.


Asunto(s)
Disruptores Endocrinos , Plaguicidas , Humanos , Opinión Pública , Riesgo , Hormonas , Plaguicidas/toxicidad , Plaguicidas/análisis , Malasia , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
4.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892447

RESUMEN

Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB-neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB-neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB-neuT breast carcinoma confirmed that BPA's impact on cancer progression can be particularly relevant after chronic, low-dose exposure.


Asunto(s)
Compuestos de Bencidrilo , Ratones Endogámicos BALB C , Fenoles , Receptores de Estrógenos , Microambiente Tumoral , Animales , Microambiente Tumoral/efectos de los fármacos , Femenino , Ratones , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Agua Potable , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo , Ratones Transgénicos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Carcinogénesis/inducido químicamente , Carcinogénesis/efectos de los fármacos , Disruptores Endocrinos/toxicidad
5.
J Environ Manage ; 340: 117978, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116415

RESUMEN

Heterogeneous iron/persulfate system suffers from the problems of high ion leaching, severe catalyst surface corrosion and low performance stability. Herein, a series of iron compound incorporated N doped biochar composite catalysts were prepared from pyrolyzing wood powder and ferric ferrocyanide mixture, which were used for bisphenol A (BPA) degradation in water through peroxymonosulfate (PMS) activation. It was found that the reducing gases released from wood powder at different pyrolysis temperature significantly affected the crystalline phase of the iron compound in the catalyst, in which pure phase iron carbide (Fe3C) decorated N doped biochar was obtained at pyrolysis temperature of 600 °C or higher. Wood powder was introduced as both Fe3C formation inductive agent and biochar precursor. Fe3C/biochar exhibited optimal BPA degradation performance, in which 0.5 g/L of catalyst could completely degrade 0.05 mM BPA within 30 min. Radical, high valent iron-oxo, and non-radical species were all generated in the reaction system by both Fe3C and N doped biochar, respectively. Moreover, the multi-valence nature of Fe in Fe3C enabled the reaction system with remarkably reduced Fe ion leaching and negligible iron sludge production since Fe3C could activate PMS through a heterogeneous mechanism. Having multiple active species generated for BPA degradation, the prepared catalyst also showed promising adaptability and recyclability. This study can provide a new solution for the design of iron based catalyst/PMS system for organic pollutant degradations with low ion release.


Asunto(s)
Compuestos de Hierro , Madera , Polvos , Compuestos de Hierro/química , Hierro/química , Peróxidos/química
6.
Environ Monit Assess ; 195(11): 1352, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37861868

RESUMEN

The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.


Asunto(s)
Ecosistema , Disruptores Endocrinos , Recién Nacido , Humanos , Aguas Residuales , Monitoreo del Ambiente , Agua/análisis , Compuestos de Bencidrilo/análisis , Plásticos/química , Disruptores Endocrinos/análisis
7.
Environ Res ; 214(Pt 2): 113849, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35843282

RESUMEN

Androgens are released by humans and livestock into the environment and which cause potent endocrine disruptions even at nanogram per liter levels. In this article, we reviewed updated research results on the structure, source, distribution characteristics and the fate of androgens in ecological systems; and emphasized the potential risk of androgens in aquatic organism. Androgens have moderately solubility in water (23.6-58.4 mg/L) and moderately hydrophobic (log Kow 2.75-4.40). The concentration of androgens in surface waters were mostly in ng/L ranges. The removal efficiencies of main wastewater treatment processes were about 70-100%, except oxidation ditch and stabilization ponds. Sludge adsorption and microbial degradation play important role in the androgens remove. The conjugated androgens were transformed into free androgens in environmental matrices. Global efforts to provide more toxicity data and establish standard monitoring methods need a revisit. Of the day available, there is an urgent need for comprehensive consideration of the impact of androgens on the environment and ecology.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Andrógenos/toxicidad , Organismos Acuáticos , Monitoreo del Ambiente , Humanos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
8.
Mol Reprod Dev ; 88(10): 650-672, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34617353

RESUMEN

Phthalate esters are synthetic chemicals used in the plastic industry as plasticizers and consumable products. According to United Nations, about 400 million tons of plastic are produced every year. In parallel with increased production, the concerns about its effects on human health have increased because phthalates are endocrine-disrupting compounds. Humans are continuously exposed to phthalates through different routes of exposure. Experimental data have associated the phthalates exposure to adverse effects on development and reproduction in women (e.g., earlier puberty, primary ovarian insufficiency, endometriosis, preterm birth, or in vitro fertilization) and men (e.g., anogenital distance, cryptorchidism, hypospadias, and changes in adult reproductive function) although there is no consensus. Therefore, one question arises: could the increase in infertility be related to phthalates exposure? To answer this question, we aimed to assess the disrupting-effects of phthalates on the human reproductive system. For this, we reviewed the current literature based on epidemiological and experimental data and experimental studies in humans. The phthalate effects were discussed in a separate mode for female and male reproductive systems. In summary, phthalates induce toxicity in the reproductive system and human development. The increased plastic production may be related to the increase in human infertility.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Nacimiento Prematuro , Adulto , Contaminantes Ambientales/toxicidad , Femenino , Genitales , Humanos , Recién Nacido , Masculino , Ácidos Ftálicos/toxicidad
9.
Environ Health ; 18(1): 75, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31443693

RESUMEN

BACKGROUND: Michigan residents were directly exposed to endocrine-disrupting compounds, polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB). A growing body of evidence suggests that exposure to certain endocrine-disrupting compounds may affect thyroid function, especially in people exposed as children, but there are conflicting observations. In this study, we extend previous work by examining age of exposure's effect on the relationship between PBB exposure and thyroid function in a large group of individuals exposed to PBB. METHODS: Linear regression models were used to test the association between serum measures of thyroid function (total thyroxine (T4), total triiodothyronine (T3), free T4, free T3, thyroid stimulating hormone (TSH), and free T3: free T4 ratio) and serum PBB and PCB levels in a cross-sectional analysis of 715 participants in the Michigan PBB Registry. RESULTS: Higher PBB levels were associated with many thyroid hormones measures, including higher free T3 (p = 0.002), lower free T4 (p = 0.01), and higher free T3: free T4 ratio (p = 0.0001). Higher PCB levels were associated with higher free T4 (p = 0.0002), and higher free T3: free T4 ratio (p = 0.002). Importantly, the association between PBB and thyroid hormones was dependent on age at exposure. Among people exposed before age 16 (N = 446), higher PBB exposure was associated with higher total T3 (p = 0.01) and free T3 (p = 0.0003), lower free T4 (p = 0.04), and higher free T3: free T4 ratio (p = 0.0001). No significant associations were found among participants who were exposed after age 16. No significant associations were found between TSH and PBB or PCB in any of the analyses conducted. CONCLUSIONS: This suggests that both PBB and PCB are associated with thyroid function, particularly among those who were exposed as children or prenatally.


Asunto(s)
Exposición a Riesgos Ambientales , Bifenilos Polibrominados/sangre , Bifenilos Policlorados/sangre , Hormonas Tiroideas/sangre , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Michigan , Persona de Mediana Edad
10.
Gen Comp Endocrinol ; 238: 69-77, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27318278

RESUMEN

Global climate change leading to increased temperatures may affect shifts in physiological processes especially in ectothermic organisms. Temperature-dependent shifts in developmental rate in particular, may lead to life-long changes in adult morphology and physiology. Combined with anthropogenic changes in the chemical environment, changes in developmental outcomes may affect adult functionality. The purpose of this study is to determine 1) if small increases in diel water temperature affect the development of Arizona tiger salamander (Ambystoma tigrinum nebulosum) larvae, and 2) if this change interacts with exposure to the common environmental thyroid disrupting compound, perchlorate. Larvae between Watson and Russell developmental stages 8-13 were exposed to ammonium perchlorate (AP) at doses of 0, 20 or 200ppb and then raised at either ambient or a 0.9°C elevated above ambient temperature for 81days in outdoor enclosures. During the first 5 treatment weeks, AP treatment induced slower development and smaller snout-vent length (SVL) of exposed larvae, but only in the elevated temperature group. During the later stages of development, the small increase in temperature, regardless of AP treatment, tended to decrease the time to metamorphosis and resulted in a significantly smaller body mass and worse body condition. Our results suggest that even small diel water temperature increases can affect the developmental process of salamanders and this shift in the water temperature may interact with a common environmental contaminant.


Asunto(s)
Ambystoma/crecimiento & desarrollo , Ambystoma/fisiología , Contaminantes Ambientales/toxicidad , Percloratos/toxicidad , Compuestos de Amonio Cuaternario/toxicidad , Temperatura , Agua , Ambystoma/anatomía & histología , Animales , Arizona , Peso Corporal/efectos de los fármacos , Larva/crecimiento & desarrollo , Metamorfosis Biológica/efectos de los fármacos
11.
Endocrinology ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984714

RESUMEN

The blood-brain barrier (BBB) is an extensive capillary network that protects the brain from environmental and metabolic toxins while limiting drug delivery to the central nervous system (CNS). The ATP-Binding Cassette (ABC) transporter Breast cancer resistance protein (Bcrp) reduces drug delivery across the BBB by actively transporting its clinical substrates back into peripheral circulation before their entry into the CNS compartment. 17ß-estradiol (E2)-elicited changes in Bcrp transport activity and expression have been documented previously. We report a novel signaling mechanism by which E2 decreases Bcrp transport activity in mouse brain capillaries (MBCs) via rapid non-genomic signaling through estrogen receptor α (ERα). We extended this finding to investigate the effects of different endocrine-disrupting compounds (EDCs) and selective estrogen receptor modulators (SERMs) on Bcrp transport function. We also demonstrate sex-dependent expression of Bcrp and E2-sensitive Bcrp transport activity at the BBB ex vivo. This work establishes an explanted tissue-based model by which to interrogate EDCs and SERMs as modulators of nongenomic estrogenic signaling with implications for sex and hormonal regulation of therapeutic delivery into the CNS.

12.
Talanta ; 275: 126174, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705021

RESUMEN

To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.


Asunto(s)
Bioensayo , Bioensayo/métodos , Humanos , Disruptores Endocrinos/análisis , Disruptores Endocrinos/farmacología , Reacciones Falso Positivas , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/química , Andrógenos/análisis , Andrógenos/metabolismo , Antagonistas de Andrógenos/análisis , Antagonistas de Andrógenos/farmacología
13.
Sci Total Environ ; 903: 166060, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543346

RESUMEN

Breast cancer, ovarian cancer, and uterus cancer are among the most common female cancers. They are suspected to associate with exposures to specific environmental pollutants, which remain unidentified in source waters. In this work, we focused on the Pearl River Basin region in China, which experienced a high incidence of breast, ovarian, and uterus cancers. Combining cancer patient data, mammalian cell cytotoxicity analyses, and exhaustive historical and current chemical assessments, we for the first time identified source water components that promoted proliferation of mammalian cells, and confirmed their association with these female cancers via the estrogen receptor mediated pathway. Therefore, the components that have previously been found to enhance the proliferation of estrogen receptor-containing cells through endocrine disruption could be the crucial factor. Based on this, components that matched with this toxicological characteristic (i.e., estrogen-like effect) were further identified in source waters, including (1) organic components: phthalates, bisphenol A, nonylphenols, and per-/polyfluoroalkyls; (2) inorganic components: Sb, Co, As, and nitrate. Moreover, these identified water components were present at levels comparable to other regions with high female cancer prevalence, suggesting that the potential risk of these components may not be exclusive to the study region. Together, multiple levels of evidence suggested that long-term co-exposures to source water estrogenic components may be important to the development of breast, ovarian, and uterus cancers.

14.
Chemosphere ; 312(Pt 1): 137114, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334752

RESUMEN

Endocrine disrupting compounds (EDCs) have been increasingly detected in drinking water sources, and pose severe threat to human health. Polyamide (PA) based nanofiltration (NF) membrane has great potential for EDCs removal from water, but the removal of hydrophobic EDCs is not satisfying due to strong hydrophobic affinity. In this study, UiO-66-NH2/PA membranes were prepared by predepositing hydrophilic UiO-66-NH2 onto the substrate prior to interfacial polymerization. The UiO-66-NH2 aggregates increased the permeable area and strengthened the "gutter effect". Therefore, the pure water flux of UiO-66-NH2/PA increased by 115% compared with that of the thin-film composite (TFC) membrane, and its rejection of Na2SO4 was 96%. The hydrophilicity-enhanced PA film reduced its adsorption of EDCs and decreased the driving force for EDCs diffusion. Moreover, the UiO-66-NH2-induced hydrophilic nanochannels, including the interfacial gaps between PA film and UiO-66-NH2 aggregates, the gaps in UiO-66-NH2 aggregates, and the inherent pores in UiO-66-NH2 crystals, alleviated the hydrophobic affinity and effectively restricted EDCs diffusion. The rejection rates of methylparaben, propylparaben, bisphenol A, and benzylparaben by the optimal UiO-66-NH2/PA were 50%, 67%, 75%, and 85%, respectively, and the water/benzylparaben selectivity was 4.4 times as high as that of TFC. The results demonstrate that incorporating hydrophilic metal-organic frameworks (MOFs) can improve the membrane hydrophilicity and create hydrophilic nanochannels, and is an effective strategy to enhance EDCs removal by nanofiltration.


Asunto(s)
Disruptores Endocrinos , Ácidos Ftálicos , Humanos , Nylons , Agua
15.
Aquat Toxicol ; 257: 106440, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822074

RESUMEN

Human activity has now introduced novel chemicals into most aquatic ecosystems. Endocrine-disrupting compounds originating from plastic pollution and manufacture can have pronounced biological effects by disrupting hormone-mediated processes. Bisphenol A (BPA) is one of the most commonly produced endocrine-disrupting compounds, which interferes with signalling by a broad range of hormones. In recognition of its potentially harmful effects, BPA is being replaced by substitutes such as bisphenol S (BPS). However, toxicological studies revealed that BPS too can bind to hormone receptors and disrupt signalling, particularly of thyroid hormone. The aim of this study was to test whether BPS exposure impacts locomotor performance and muscle function in zebrafish (Danio rerio). Locomotor performance depends on thyroid hormone signalling, and it is closely related to fitness so that its disruption can have negative ecological and evolutionary consequences. BPS exposure of 15 µg l-1 [∼60 nM] and 30 µg l-1 (but not 60 µg l-1) decreased sustained swimming performance (Ucrit), but not sprint speed. In a fully factorial design, we show that living in flowing water increased Ucrit compared to a still water control, and that BPS reduced Ucrit under both conditions but did not eliminate the training effect. In a second factorial experiment, we show that BPS did not affect mitochondrial bioenergetics in skeletal muscle (state 3 and 4 rates, respiratory control ratios, ROS production), but that induced hypothyroidism decreased state 3 and 4 rates of respiration. However, both hypothyroidism and BPS exposure decreased activity of AMP-activated protein kinase (pAMPK:total AMPK) but increased protein levels of myocyte enhancer factor 2, and slow and fast myosin heavy chains. Our data indicate that BPS is not a safe alternative for BPA and that exposure to BPS can have ecological consequences, which are likely to be at least partly mediated via thyroid hormone disruption.


Asunto(s)
Hipotiroidismo , Contaminantes Químicos del Agua , Animales , Adulto , Humanos , Pez Cebra/metabolismo , Proteínas Musculares/metabolismo , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Hormonas Tiroideas/metabolismo , Compuestos de Bencidrilo/toxicidad
16.
Chemosphere ; 294: 133781, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35104549

RESUMEN

The widespread use of methylparaben as a preservative has caused increased exposure to natural aquatic systems in recent decades. However, current studies have suggested that exposure to this compound can result in endocrine disrupting effects, raising much concern regarding its environmental impact. In contast, methylparaben has also been found to be part of the metabolome of some organisms, prompting the question as to whether this compound may be more natural than previously assumed. Through a combination of field studies investigating the natural presence of methylparaben across different taxa, and a 54-day microcosm experiment examining the bioaccumulation and movement of methylparaben across different life stages of aquatic insects (order Trichoptera), our results offer evidence suggesting the natural origin of methylparaben in aquatic and terrestrial biota. This study improves our understanding of the role and impact this compound has on biota and challenges the current paradigm that methylparaben is exclusively a harmful anthropogenic contaminant. Our findings highlight the need for further research on this topic to fully understand the origin and role of parabens in the environment which will allow for a comprehensive understanding of the extent of environmental contamination and result in a representative assessment of the environmental risk that may pose.


Asunto(s)
Parabenos
17.
Environ Pollut ; 315: 120319, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183872

RESUMEN

Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.


Asunto(s)
Neoplasias Testiculares , Contaminantes Químicos del Agua , Animales , Masculino , Humanos , Plásticos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Tecnología
18.
Front Endocrinol (Lausanne) ; 13: 1028438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387888

RESUMEN

With the gradual decline in global fertility rates, there is a need to identify potential contributing factors, their mechanisms of actions and investigate possible solutions to reverse the trend. Endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), are environmental toxicants that are known to negatively impact reproductive functions. As such, the use of BPA in the manufacturing industry has slowly been replaced by analogs, including bisphenol S (BPS) and bisphenol F (BPF), despite limited knowledge available regarding their impact on health and their safety. The following study investigates the effects of BPA, BPS and BPF at a concentration of 0.5 µg/mL and 50 µg/mL on bovine granulosa cell apoptosis, with the ultimate goal of determining how they may impact oocyte competence and, thus, overall fertility. The underlying hypothesis is that bisphenols disrupt the granulosa cell environment surrounding the oocyte inducing excessive apoptosis via the intrinsic mitochondrial pathway. To test this hypothesis, apoptosis was measured following a time- and dose-dependent exposure to all three bisphenols by flowcytometry paired with annexin V/PI staining as well as by quantification of key genes belonging to the intrinsic apoptotic pathway both at the mRNA and protein levels. The results of this study report that BPA and BPF reduce cell viability through reduced cell counts and increased apoptosis. This increase is due, in part, to the induction of apoptotic genes of the intrinsic pathway of apoptosis. Additionally, this study also suggests that BPS may not act on the intrinsic mitochondrial apoptotic pathway in bovine granulosa cells. Overall, this study allows us to establish potential apoptotic pathways activated by bisphenols as well as compare the relative apoptotic activities of BPA to its most widespread analogs.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Femenino , Bovinos , Animales , Compuestos de Bencidrilo/toxicidad , Células de la Granulosa/metabolismo
19.
J Hazard Mater ; 424(Pt A): 127327, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600377

RESUMEN

Humans are exposed to endocrine disrupting compounds (EDCs) in tap water via drinking water. Currently, most of the analytical methods used to assess a long list of EDCs in drinking water have been made available only for a single group of EDCs and their metabolites, in contrast with other environmental matrices (e.g., surface water, sediments, and biota) for which more robust methods have been developed that allow detection of multiple groups. This study reveals an analytical method of one-step solid phase extraction, incorporated together with liquid chromatography-tandem mass spectrometry for the quantification of multiclass EDCs (i.e., pharmaceuticals, hormones, plasticizers, and pesticides) in drinking water. Fifteen multiclass EDCs significantly varied in amount between field samples (p < 0.05), with a maximum concentration of 17.63 ng/L observed. Daily exposure via drinking water is unlikely to pose a health risk (risk quotient < 1). This method serves as an analytical protocol for tracing multiclass EDC contamination in tap water as part of a multibarrier approach to ensure safe drinking water for good health and well-being. It represents a simpler one-step alternative tool for drinking water analysis, thereby avoiding the time-consuming and expensive multi-extraction steps that are generally needed for analyzing multiclass EDCs.


Asunto(s)
Agua Potable , Disruptores Endocrinos , Plaguicidas , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Hormonas , Humanos , Plastificantes , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
20.
Membranes (Basel) ; 12(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36295717

RESUMEN

This paper presents a comprehensive study of the performance of a newly developed titania nanotube incorporated RO membrane for endocrine-disrupting compound (EDC) removal at a low concentration. EDCs are known as an emerging contaminant, and if these pollutants are not properly removed, they can enter the water cycle and reach the water supply for residential use, causing harm to human health. Reverse osmosis (RO) has been known as a promising technology to remove EDCs. However, there is a lack of consensus on their performance, especially on the feed concentrations of EDC that vary from one source to another. In this study, polyamide thin-film composite (PA TFC) membrane was incorporated with one-dimensional titania nanotube (TNT) to mitigate trade-off between water permeability and solute rejection of EDC. The characterization indicated that the membrane surface hydrophilicity has been greatly increased with the presence of TNT. Using bisphenol A (BPA) and caffeine as model EDC, the removal efficiencies of the pristine TFC and thin-film nanocomposite (TFN) membranes were evaluated. Compared to TFC membrane, the membrane modified with 0.01% of TNT exhibited improved permeability of 50% and 49% for BPA and caffeine, respectively. A satisfactory BPA rejection of 89.05% and a caffeine rejection of 97.89% were achieved by the TNT incorporated TFN membranes. Furthermore, the greater hydrophilicity and smoother surface of 0.01 TFN membrane led to lower membrane fouling tendency under long-term filtration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA