RESUMEN
Current genome-editing systems generally rely on inducing DNA double-strand breaks (DSBs). This may limit their utility in clinical therapies, as unwanted mutations caused by DSBs can have deleterious effects. CRISPR/Cas9 system has recently been repurposed to enable target gene activation, allowing regulation of endogenous gene expression without creating DSBs. However, in vivo implementation of this gain-of-function system has proven difficult. Here, we report a robust system for in vivo activation of endogenous target genes through trans-epigenetic remodeling. The system relies on recruitment of Cas9 and transcriptional activation complexes to target loci by modified single guide RNAs. As proof-of-concept, we used this technology to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrate that CRISPR/Cas9-mediated target gene activation can be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms. This establishes new avenues for developing targeted epigenetic therapies against human diseases. VIDEO ABSTRACT.
Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Marcación de Gen/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Utrofina/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Distrofina/genética , Interleucina-10/genética , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Activación TranscripcionalRESUMEN
Pathogenic lymphocytes initiate the development of chronic inflammatory diseases. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) (encoded by Csf2) is a key communicator between pathogenic lymphocytes and tissue-invading inflammatory phagocytes. However, the molecular properties of GM-CSF-producing cells and the mode of Csf2 regulation in vivo remain unclear. To systematically study and manipulate GM-CSF+ cells and their progeny in vivo, we generated a fate-map and reporter of GM-CSF expression mouse strain (FROG). We mapped the phenotypic and functional profile of auto-aggressive T helper (Th) cells during neuroinflammation and identified the signature and pathogenic memory of a discrete encephalitogenic Th subset. These cells required interleukin-23 receptor (IL-23R) and IL-1R but not IL-6R signaling for their maintenance and pathogenicity. Specific ablation of this subset interrupted the inflammatory cascade, despite the unperturbed tissue accumulation of other Th subsets (e.g., Th1 and Th17), highlighting that GM-CSF expression not only marks pathogenic Th cells, but that this subset mediates immunopathology and tissue destruction.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1beta/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Inflamación/genética , Inflamación/patología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR6/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.
Asunto(s)
Epigénesis Genética , Epigenómica , Vesículas Extracelulares , Procesamiento Proteico-Postraduccional , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Epigenómica/métodos , Procesamiento Proteico-Postraduccional/genética , Histonas/genética , Histonas/metabolismo , Animales , Comunicación Celular/genética , ARN no Traducido/genéticaRESUMEN
Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host-parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host-parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.
Asunto(s)
Genoma de Planta , Interacciones Huésped-Parásitos/genética , Fitomejoramiento/métodos , Plantas/parasitología , Evolución Biológica , Variación Biológica Poblacional , Quimera , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/fisiología , Plantas/genéticaRESUMEN
Impaired expression of MHC (major histocompatibility complex) class I in cancers constitutes a major mechanism of immune evasion. It has been well documented that the low level of MHC class I is associated with poor prognosis and resistance to checkpoint blockade therapies. However, there is lmited approaches to specifically induce MHC class I to date. Here, we show an approach for robust and specific induction of MHC class I by targeting an MHC class I transactivator (CITA)/NLRC5, using a CRISPR/Cas9-based gene-specific system, designated TRED-I (Targeted reactivation and demethylation for MHC-I). The TRED-I system specifically recruits a demethylating enzyme and transcriptional activators on the NLRC5 promoter, driving increased MHC class I antigen presentation and accelerated CD8+ T cell activation. Introduction of the TRED-I system in an animal cancer model exhibited tumor-suppressive effects accompanied with increased infiltration and activation of CD8+ T cells. Moreover, this approach boosted the efficacy of checkpoint blockade therapy using anti-PD1 (programmed cell death protein) antibody. Therefore, targeting NLRC5 by this strategy provides an attractive therapeutic approach for cancer.
Asunto(s)
Genes MHC Clase I , Neoplasias , Animales , Genes MHC Clase I/genética , Antígenos de Histocompatibilidad Clase I , Transactivadores/metabolismo , Neoplasias/genética , DesmetilaciónRESUMEN
SERRATE (SE) is a core protein for microRNA (miRNA) biogenesis as well as for mRNA alternative splicing. Investigating the regulatory mechanism of SE expression is hence critical to understanding its detailed function in diverse biological processes. However, little about the control of SE expression has been clarified, especially through long noncoding RNA (lncRNA). Here, we identified an antisense intragenic lncRNA transcribed from the 3' end of SE, named SEAIRa. SEAIRa repressed SE expression, which in turn led to serrated leaves. SEAIRa recruited plant U-box proteins PUB25/26 with unreported RNA binding ability and a ubiquitin-like protein related to ubiquitin 1 (RUB1) for H2A monoubiquitination (H2Aub) at exon 11 of SE. In addition, PUB25/26 helped cleave SEAIRa and release the 5' domain fragment, which recruited the PRC2 complex for H3 lysine 27 trimethylation (H3K27me3) deposition at the first exon of SE. The distinct modifications of H2Aub and H3K27me3 at different sites of the SE locus cooperatively suppressed SE expression. Collectively, our results uncover an epigenetic mechanism mediated by the lncRNA SEAIRa that modulates SE expression, which is indispensable for plant growth and development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Represión Epigenética , ARN Largo no Codificante , Proteínas de Unión al ARN , Epigénesis Genética , Histonas , ARN Largo no Codificante/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ARN/genéticaRESUMEN
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Asunto(s)
Histonas , Neoplasias , Humanos , Acilación , Histonas/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Neoplasias/genéticaRESUMEN
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
RESUMEN
As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Almidón/metabolismo , Carbono/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismoRESUMEN
Enhancers are critical cis-regulatory elements controlling gene expression during cell development and differentiation. However, genome-wide enhancer characterization has been challenging due to the lack of a well-defined relationship between enhancers and genes. Function-based methods are the gold standard for determining the biological function of cis-regulatory elements; however, these methods have not been widely applied to plants. Here, we applied a massively parallel reporter assay on Arabidopsis to measure enhancer activities across the genome. We identified 4327 enhancers with various combinations of epigenetic modifications distinctively different from animal enhancers. Furthermore, we showed that enhancers differ from promoters in their preference for transcription factors. Although some enhancers are not conserved and overlap with transposable elements forming clusters, enhancers are generally conserved across thousand Arabidopsis accessions, suggesting they are selected under evolution pressure and could play critical roles in the regulation of important genes. Moreover, comparison analysis reveals that enhancers identified by different strategies do not overlap, suggesting these methods are complementary in nature. In sum, we systematically investigated the features of enhancers identified by functional assay in A. thaliana, which lays the foundation for further investigation into enhancers' functional mechanisms in plants.
Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Epigénesis GenéticaRESUMEN
Skin aging is characterized by wrinkle formation and increased frailty and laxity, leading to the risk of age-related skin diseases. Keratinocyte is an important component of the epidermis in skin structure, and keratinocyte senescence has been identified as a pivotal factor in skin aging development. Because epigenetic pathways play a vital role in the regulation of skin aging, we evaluated human skin samples for DNA hydroxymethylation (5-hydroxymethylcytosine; 5-hmC) and SIRT4 expressions. Results found that both 5-hmC and SIRT4 showed a significant decrease in aged human skin samples. To test the results in vitro, human keratinocytes were cultured in H2O2, which modulates skin aging in vivo. However, H2O2-induced keratinocytes showed senescence-associated protein expression and significant downregulation of 5-hmC and SIRT4 expressions. Moreover, 5-hmC-converting enzymes ten eleven translocation 2 (TET2) showed a decrease and enhanced TET2 acetylation level in H2O2-induced keratinocytes. However, the overexpression of SIRT4 in keratinocytes alleviates the senescence phenotype, such as senescence-associated protein expression, decreases the TET2 acetylation, but increases TET2 and 5-hmC expressions. Our results provide a novel relevant mechanism whereby the epigenetic regulation of keratinocytes in skin aging may be correlated with SIRT4 expression and TET2 acetylation in 5-hmC alteration. Our study may provide a potential strategy for antiskin aging, which targets the SIRT4/TET2 axis involving epigenetic modification in keratinocyte senescence.
Asunto(s)
5-Metilcitosina/análogos & derivados , Dioxigenasas , Sirtuinas , Humanos , Anciano , Epigénesis Genética , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Queratinocitos/metabolismo , Metilación de ADN , Proteínas Mitocondriales/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Dioxigenasas/metabolismoRESUMEN
Klotho is well known as a gene with antiaging properties. It has membrane and soluble forms, providing a unique system that controls various metabolic processes essential to health and disease. Klotho deficiency has been revealed to be associated with various aging-related disorders. Based on its various known and unknown protective properties, upregulating the Klotho gene may be a possible therapeutic and/or preventive approach in aging-related complications. Some agents, such as hormonal compounds, renin-angiotensin system inhibitors, antioxidants, peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, statins, vitamin D receptor agonists, antioxidants, anti-inflammatory agents, mammalian target of rapamycin (mTOR) signaling inhibitors, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors, can possibly lead to the upregulation and elevation of Klotho levels. Demethylation and deacetylation of the Klotho gene can also be considered other possible Klotho-enhancement methods. Some emerging techniques, such as RNA modifications, gene therapy, gene editing, and exosome therapy, probably have the potential to be applied for increasing Klotho. In the present study, these current and emerging Klotho-enhancement strategies and their underlying mechanisms were comprehensively reviewed, which could highlight some potential avenues for future research.
Asunto(s)
Glucuronidasa , Transducción de Señal , Glucuronidasa/genética , Glucuronidasa/metabolismo , Antioxidantes , Regulación hacia ArribaRESUMEN
BACKGROUND: Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-ß (TGF-ß), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-ß remain poorly understood. METHODS: The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-ß-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS: KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-ß-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-ß-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-ß treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION: Our results shed light on KAT14 as a key effector of TGF-ß-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.
Asunto(s)
Endometriosis , Fibrosis , Factor de Respuesta Sérica , Factor de Crecimiento Transformador beta , Adulto , Animales , Femenino , Humanos , Ratones , Endometriosis/patología , Endometriosis/metabolismo , Endometrio/metabolismo , Endometrio/patología , Histona Acetiltransferasas/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Factor de Respuesta Sérica/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
Synthetic genomics involves the design, assembly, and transfer of artificially synthesized DNA fragments into target hosts to replace the native genome and construct viable forms of life. With advances in DNA synthesis and assembly techniques, the application of synthetic genomics in viruses, bacteria, and yeast has improved our knowledge of genome organization and function. Multicellular eukaryotic organisms are characterized by larger genomes, more complex epigenetic regulation, and widespread transposable elements, making genome synthesis challenging. Recently, the first synthetic multicellular eukaryotic organism was generated in the model plant Physcomitrium patens with a partially synthetic chromosome arm. Here, we introduce the design and assembly principles of moss genome synthesis. We also discuss the remaining technical barriers in the application of synthetic genomics in seed plants.
Asunto(s)
Genoma de Planta , Biología Sintética , Biología Sintética/métodos , Genómica/métodos , Bryopsida/genéticaRESUMEN
The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.
Asunto(s)
Retroelementos , Secale , Retroelementos/genética , Secale/genética , Fitomejoramiento , Cromosomas de las Plantas/genética , Triticum/genética , Centrómero/genética , Translocación GenéticaRESUMEN
Postnatal immune activation (PIA) induces persistent glial activation in the brain and causes various neuropathologies in adults. Exercise training improves stress-related mood disorders; however, the role of exercise in psychiatric disorders induced by early-life immune activation and the association between exercise training and glial activation remain unclear. We compared the effects of different exercise intensities on the PIA model, including high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Both HIIT and MICT in adolescent mice inhibited neuroinflammation, remodeled synaptic plasticity, and improved PIA-induced mood disorders in adulthood. Importantly, HIIT was superior to MICT in terms of reducing inflammation and increasing body weight. RNA-seq of prefrontal cortex (PFC) tissues revealed a gene expression pattern, confirming that HIIT was more effective than MICT in improving brain glial cell activation through epigenetic modifications of KDM6B. We investigated the role of KDM6B, a specific histone lysine demethylation enzyme - histone 3 lysine 27 demethylase, in inhibiting glial activation against PIA-induced depression and anxiety by regulating the expression of IL-4 and brain-derived neurotrophic factor (BDNF). Overall, our data support the idea that HIIT improves PIA-induced mood disorders by regulating KDM6B-mediated epigenetic mechanisms and indicate that HIIT might be superior to MICT in improving mood disorders with PIA in mice. Our findings provide new insights into the treatment of anxiety and depression disorders.
Asunto(s)
Histona Demetilasas con Dominio de Jumonji , Trastornos del Humor , Neuroglía , Condicionamiento Físico Animal , Animales , Femenino , Masculino , Ratones , Encéfalo/metabolismo , Encéfalo/inmunología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Inflamación/metabolismo , Inflamación/inmunología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones Endogámicos C57BL , Trastornos del Humor/metabolismo , Neuroglía/metabolismo , Neuroglía/inmunología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Corteza Prefrontal/metabolismoRESUMEN
Since HMAs were recommended for treatments in AML and MDS, we wondered whether HMAs could provide similar benefit to AML and intermediate/high-risk MDS under the direction of next-generation sequencing. Here we retrospectively analyzed the prognosis of 176 AML and 128 intermediate/high-risk MDS patients treated with HMAs or non-HMA regimens. For AML, HMAs regimen was related to better CR rate compared with non-HMA regimen in elder cohort, while the situation was the opposite in younger cohort. In consolidation phase, EMM (+) patients could benefit from HMAs regimen. Relapsed AML patients receiving HMAs regimen rather than non-HMA regimen had better post-relapse survival. Multivariate analysis identified HMA regimen as an independent prognostic factor for OS in EMM (+) cohort. For intermediate/high-risk MDS patients not undergoing HSCT, however, HMA regimen showed no survival advantage in EMM (+) cohort and was conversely associated with shorter survival in EMM (-) cohort compared with non-HMA regimen. And among those undergoing HSCT, HMA prior to HSCT predicted poor prognosis compared with upfront HSCT regardless of the existence of EMMs. Therefore, HMAs had better therapeutic value in AML rather than in intermediate/high-risk MDS based on EMMs.
Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Anciano , Estudios Retrospectivos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Epigénesis Genética , Mutación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genéticaRESUMEN
Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.
Asunto(s)
Metilación de ADN , Plumas , Sistema Hipotálamo-Hipofisario , Receptores de Hormona Liberadora de Corticotropina , Golondrinas , Animales , Femenino , Plumas/fisiología , Golondrinas/genética , Golondrinas/fisiología , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Corticosterona/sangre , Corticosterona/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , Epigénesis Genética , Estrés Fisiológico/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismoRESUMEN
Breast cancer is a major public health concern worldwide, being the most commonly diagnosed cancer among women and a leading cause of cancer-related deaths. Recent studies have highlighted the significance of non-histone methylation in breast cancer, which modulates the activity, interaction, localization, and stability of target proteins. This regulation affects critical processes such as oncogenesis, tumor growth, proliferation, invasion, migration, and immune responses. This review delves into the enzymes responsible for non-histone methylation, such as protein arginine methyltransferases (PRMTs), lysine methyltransferases (KMTs), and demethylases, and explores their roles in breast cancer. By elucidating the molecular mechanisms and functional consequences of non-histone methylation, this review aims to provide insights into novel therapeutic strategies targeting these pathways. The therapeutic potential of targeting non-histone methylation to overcome drug resistance and enhance treatment efficacy in breast cancer is also discussed, highlighting promising avenues for future research and clinical applications.
Asunto(s)
Neoplasias de la Mama , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Animales , Metilación , Terapia Molecular Dirigida , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/metabolismoRESUMEN
Recently, Leydig cell (LCs) transplantation has a promising potential to treat male hypogonadism. However, the scarcity of seed cells is the actual barrier impeding the application of LCs transplantation. Utilizing the cutting-edge CRISPR/dCas9VP64 technology, human foreskin fibroblasts (HFFs) were transdifferentiated into Leydig-like cellsï¼iLCsï¼ in previous study, but the efficiency of transdifferentiation is not very satisfactory. Therefore, this study was conducted to further optimize the CRISPR/dCas9 system for obtaining sufficient iLCs. First, the stable CYP11A1-Promoter-GFP-HFFs cell line was established by infecting HFFs with CYP11A1-Promoter-GFP lentiviral vectors, and then co-infected with dCas9p300 and the combination of sgRNAs targeted to NR5A1, GATA4 and DMRT1. Next, this study adopted quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence to determine the efficiency of transdifferentiation, the generation of testosterone, the expression levels of steroidogenic biomarkers. Moreover, we utilized chromatin immuno-precipitation (ChIP) followed by quantitative polymerase chain reaction (ChIP-qPCR) to measure the levels of acetylation of targeted H3K27. The results revealed that advanced dCas9p300 facilitated generation of iLCs. Moreover, the dCas9p300-mediated iLCs significantly expressed the steroidogenic biomarkers and produced more testosterone with or without LH treatment than the dCas9VP64-mediated. Additionally, preferred enrichment in H3K27ac at the promoters was detected only with dCas9p300 treatment. The data provided here imply that the improved version of dCas9 can aid in the harvesting of iLCs, and will provide sufficient seed cells for cell transplantation treatment of androgen deficiency in the future.