Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.615
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(42): e2320805121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378092

RESUMEN

Alcohol consumption during adolescence has been associated with neuroanatomical abnormalities and the appearance of future disorders. However, the latest advances in this field point to the existence of risk profiles which may lead to some individuals into an early consumption. To date, some studies have established predictive models of consumption based on sociodemographic, behavioral, and anatomical-functional variables using MRI. However, the neuroimaging variables employed are usually restricted to local and hemodynamic phenomena. Given the potential of connectome approaches, and the high temporal dynamics of electrophysiology, we decided to explore the relationship between future alcohol consumption and electrophysiological connectivity measured by MEG in a cohort of 83 individuals aged 14 to 16. As a result, we found a positive correlation between alcohol consumption and the functional connectivity in frontal, parietal, and frontoparietal connections. Once this relationship was described, multivariate linear regression analyses were used to evaluate the predictive capacity of functional connectivity in conjunction with other neuroanatomical and behavioral variables described in the literature. Finally, the multivariate linear regression analysis determined the importance of anatomical and functional variables in the prediction of alcohol consumption but failed to find associations with impulsivity, sensation seeking, and executive function scales. In conclusion, the predictive traits obtained in these models were closely associated with changes occurring during adolescence, suggesting the existence of different paths in neurodevelopment that have the potential to influence adolescents' relationship with alcohol consumption.


Asunto(s)
Consumo de Alcohol en Menores , Humanos , Adolescente , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Consumo de Bebidas Alcohólicas , Imagen por Resonancia Magnética , Conectoma
2.
Proc Natl Acad Sci U S A ; 121(28): e2317458121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950362

RESUMEN

Functional changes in the pediatric brain following neural injuries attest to remarkable feats of plasticity. Investigations of the neurobiological mechanisms that underlie this plasticity have largely focused on activation in the penumbra of the lesion or in contralesional, homotopic regions. Here, we adopt a whole-brain approach to evaluate the plasticity of the cortex in patients with large unilateral cortical resections due to drug-resistant childhood epilepsy. We compared the functional connectivity (FC) in patients' preserved hemisphere with the corresponding hemisphere of matched controls as they viewed and listened to a movie excerpt in a functional magnetic resonance imaging (fMRI) scanner. The preserved hemisphere was segmented into 180 and 200 parcels using two different anatomical atlases. We calculated all pairwise multivariate statistical dependencies between parcels, or parcel edges, and between 22 and 7 larger-scale functional networks, or network edges, aggregated from the smaller parcel edges. Both the left and right hemisphere-preserved patient groups had widespread reductions in FC relative to matched controls, particularly for within-network edges. A case series analysis further uncovered subclusters of patients with distinctive edgewise changes relative to controls, illustrating individual postoperative connectivity profiles. The large-scale differences in networks of the preserved hemisphere potentially reflect plasticity in the service of maintained and/or retained cognitive function.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Adolescente , Neuroimagen/métodos , Epilepsia/cirugía , Epilepsia/fisiopatología , Epilepsia/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Corteza Cerebral/cirugía , Plasticidad Neuronal/fisiología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Mapeo Encefálico/métodos , Lateralidad Funcional/fisiología
3.
Proc Natl Acad Sci U S A ; 121(44): e2403015121, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39436664

RESUMEN

The hippocampus is functionally specialized along its longitudinal axis with intricate interactions with cortical systems, which is crucial for understanding development and cognition. Using a well-established connectopic mapping technique on two large resting-state functional MRI datasets, we systematically quantified topographic organization of the hippocampal functional connectivity (hippocampal gradient) and its cortical interaction in developing brains. We revealed hippocampal functional hierarchy within the large-scale cortical brain systems, with the anterior hippocampus preferentially connected to an anterior temporal (AT) pathway and the posterior hippocampus embedded in a posterior medial (PM) pathway. We examined the developmental effects of the primary gradient and its whole-brain functional interaction. We observed increased functional specialization along the hippocampal long axis and found a general whole-brain connectivity shift from the posterior to the anterior hippocampus during development. Using phenotypic predictive modeling, we further delineated how the hippocampus is differentially integrated into the whole-brain cortical hierarchy underlying episodic memory and identified several key nodes within PM/AT systems. Our results highlight the importance of hippocampal gradient and its cortical interaction in development and for supporting episodic memory.


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Memoria Episódica , Hipocampo/fisiología , Hipocampo/crecimiento & desarrollo , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Femenino , Adulto , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Conectoma , Adulto Joven , Mapeo Encefálico/métodos , Adolescente , Niño , Vías Nerviosas/fisiología
4.
Proc Natl Acad Sci U S A ; 121(43): e2401317121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39413130

RESUMEN

Effective health promotion may benefit from understanding how persuasion emerges. While earlier research has identified brain regions implicated in persuasion, these studies often relied on event-related analyses and frequently simplified persuasive communications. The present study investigates the neural basis of valuation change induced by a persuasive healthy eating call, employing naturalistic stimuli. Fifty healthy participants performed two blocks of a bidding task, in which they had to bid on sugar-containing, sugar-free, and nonedible products during functional MRI. In between the two blocks, they listened to a persuasive healthy eating call that influenced their bidding behavior. Intriguingly, participants who resisted persuasion exhibited increased synchronization of brain activity during listening in several regions, including default mode network structures. Additionally, intersubject functional connectivity among these brain regions was found to be weaker in persuaded individuals. These results emphasize the individualized nature of processing persuasive messages, challenging conventional interpretations of synchronized neural activity. Our findings support the emerging practice of tailoring persuasive messages in health promotion campaigns.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Comunicación Persuasiva , Humanos , Femenino , Masculino , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto Joven , Promoción de la Salud/métodos , Dieta Saludable , Mapeo Encefálico/métodos
5.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768342

RESUMEN

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Asunto(s)
Lenguaje , Enfermedad de Parkinson , Habla , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/efectos de los fármacos , Masculino , Habla/fisiología , Habla/efectos de los fármacos , Femenino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética , Dopamina/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Cognición/efectos de los fármacos , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico
6.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814872

RESUMEN

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Asunto(s)
Corteza Cerebral , Cognición , Imagen por Resonancia Magnética , Humanos , Cognición/fisiología , Cognición/efectos de los fármacos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Adolescente , Niño , Conectoma/métodos , Alprazolam/farmacología , Receptores de GABA-A/metabolismo , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 121(45): e2313304121, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39471220

RESUMEN

Selective attention relies on neural mechanisms that facilitate processing of behaviorally relevant sensory information while suppressing irrelevant information, consistently linked to alpha-band oscillations in human M/EEG studies. We analyzed cortical alpha responses from intracranial electrodes implanted in eight epilepsy patients, who performed a visual spatial attention task. Electrocorticographic data revealed a spatiotemporal dissociation between attention-modulated alpha desynchronization, associated with the enhancement of sensory processing, and alpha synchronization, associated with the suppression of sensory processing, during the cue-target interval. Dorsal intraparietal areas contralateral to the attended hemifield primarily exhibited a delayed and sustained alpha desynchronization, while ventrolateral extrastriatal areas ipsilateral to the attended hemifield primarily exhibited an earlier and sustained alpha synchronization. Analyses of cross-frequency coupling between alpha phase and broadband high-frequency activity (HFA) further revealed cross-frequency interactions along the visual hierarchy contralateral to the attended locations. Directionality analyses indicate that alpha phase in early and extrastriatal visual areas modulated HFA power in downstream visual areas, thus potentially facilitating the feedforward processing of an upcoming, spatially predictable target. In contrast, in areas ipsilateral to the attended locations, HFA power modulated local alpha phase in early and extrastriatal visual areas, with suppressed interareal interactions, potentially attenuating the processing of distractors. Our findings reveal divergent alpha-mediated neural mechanisms underlying target enhancement and distractor suppression during the deployment of spatial attention, reflecting enhanced functional connectivity at attended locations, while suppressed functional connectivity at unattended locations. The collective dynamics of these alpha-mediated neural mechanisms play complementary roles in the efficient gating of sensory information.


Asunto(s)
Ritmo alfa , Atención , Percepción Visual , Humanos , Atención/fisiología , Masculino , Femenino , Adulto , Ritmo alfa/fisiología , Percepción Visual/fisiología , Adulto Joven , Electrocorticografía , Electroencefalografía , Percepción Espacial/fisiología , Estimulación Luminosa
8.
Proc Natl Acad Sci U S A ; 120(26): e2214505120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339227

RESUMEN

Sleep loss robustly disrupts mood and emotion regulation in healthy individuals but can have a transient antidepressant effect in a subset of patients with depression. The neural mechanisms underlying this paradoxical effect remain unclear. Previous studies suggest that the amygdala and dorsal nexus (DN) play key roles in depressive mood regulation. Here, we used functional MRI to examine associations between amygdala- and DN-related resting-state connectivity alterations and mood changes after one night of total sleep deprivation (TSD) in both healthy adults and patients with major depressive disorder using strictly controlled in-laboratory studies. Behavioral data showed that TSD increased negative mood in healthy participants but reduced depressive symptoms in 43% of patients. Imaging data showed that TSD enhanced both amygdala- and DN-related connectivity in healthy participants. Moreover, enhanced amygdala connectivity to the anterior cingulate cortex (ACC) after TSD associated with better mood in healthy participants and antidepressant effects in depressed patients. These findings support the key role of the amygdala-cingulate circuit in mood regulation in both healthy and depressed populations and suggest that rapid antidepressant treatment may target the enhancement of amygdala-ACC connectivity.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación de Sueño/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Imagen por Resonancia Magnética/métodos
9.
Proc Natl Acad Sci U S A ; 120(19): e2216268120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126719

RESUMEN

The brain is assumed to be hypoactive during cardiac arrest. However, animal models of cardiac and respiratory arrest demonstrate a surge of gamma oscillations and functional connectivity. To investigate whether these preclinical findings translate to humans, we analyzed electroencephalogram and electrocardiogram signals in four comatose dying patients before and after the withdrawal of ventilatory support. Two of the four patients exhibited a rapid and marked surge of gamma power, surge of cross-frequency coupling of gamma waves with slower oscillations, and increased interhemispheric functional and directed connectivity in gamma bands. High-frequency oscillations paralleled the activation of beta/gamma cross-frequency coupling within the somatosensory cortices. Importantly, both patients displayed surges of functional and directed connectivity at multiple frequency bands within the posterior cortical "hot zone," a region postulated to be critical for conscious processing. This gamma activity was stimulated by global hypoxia and surged further as cardiac conditions deteriorated in the dying patients. These data demonstrate that the surge of gamma power and connectivity observed in animal models of cardiac arrest can be observed in select patients during the process of dying.


Asunto(s)
Encéfalo , Paro Cardíaco , Animales , Humanos , Rayos gamma , Encéfalo/fisiología , Electroencefalografía , Corazón
10.
Proc Natl Acad Sci U S A ; 120(52): e2314596120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109535

RESUMEN

The amplitude of low-frequency fluctuations (ALFF) and global functional connectivity density (gFCD) are fMRI (Functional MRI) metrics widely used to assess resting brain function. However, their differential sensitivity to stimulant-induced dopamine (DA) increases, including the rate of DA rise and the relationship between them, have not been investigated. Here we used, simultaneous PET-fMRI to examine the association between dynamic changes in striatal DA and brain activity as assessed by ALFF and gFCD, following placebo, intravenous (IV), or oral methylphenidate (MP) administration, using a within-subject double-blind placebo-controlled design. In putamen, MP significantly reduced D2/3 receptor availability and strongly reduced ALFF and increased gFCD in the brain for IV-MP (Cohen's d > 1.6) but less so for oral-MP (Cohen's d < 0.6). Enhanced gFCD was associated with both the level and the rate of striatal DA increases, whereas decreased ALFF was only associated with the level of DA increases. These findings suggest distinct representations of neurovascular activation with ALFF and gFCD by stimulant-induced DA increases with differential sensitivity to the rate and the level of DA increases. We also observed an inverse association between gFCD and ALFF that was markedly enhanced during IV-MP, which could reflect an increased contribution from MP's vasoactive properties.


Asunto(s)
Encéfalo , Dopamina , Metilfenidato , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Dopamina/farmacología , Imagen por Resonancia Magnética , Metilfenidato/farmacología , Método Doble Ciego
11.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38302439

RESUMEN

Recent work has recognized a gradient-like organization in cortical function, spanning from primary sensory to transmodal cortices. It has been suggested that this axis is aligned with regional differences in neurotransmitter expression. Given the abundance of dopamine D1-receptors (D1DR), and its importance for modulation and neural gain, we tested the hypothesis that D1DR organization is aligned with functional architecture, and that inter-regional relationships in D1DR co-expression modulate functional cross talk. Using the world's largest dopamine D1DR-PET and MRI database (N = 180%, 50% female), we demonstrate that D1DR organization follows a unimodal-transmodal hierarchy, expressing a high spatial correspondence to the principal gradient of functional connectivity. We also demonstrate that individual differences in D1DR density between unimodal and transmodal regions are associated with functional differentiation of the apices in the cortical hierarchy. Finally, we show that spatial co-expression of D1DR primarily modulates couplings within, but not between, functional networks. Together, our results show that D1DR co-expression provides a biomolecular layer to the functional organization of the brain.


Asunto(s)
Encéfalo , Dopamina , Femenino , Humanos , Masculino , Imagen por Resonancia Magnética/métodos
12.
J Neurosci ; 44(5)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38050101

RESUMEN

Previous studies have shown that the left hemisphere dominates motor function, often observed through homotopic activation measurements. Using a functional connectivity approach, this study investigated the lateralization of the sensorimotor cortex during handwriting and drawing, two complex visuomotor tasks with varying contextual demands. We found that both left- and right-lateralized connectivity in the primary motor cortex (M1), dorsal premotor cortex (PMd), somatosensory cortex, and visual regions were evident in adults (males and females), primarily in an interhemispheric integrative fashion. Critically, these lateralization tendencies remained highly invariant across task contexts, representing a task-invariant neural architecture for encoding fundamental motor programs consistently implemented in different task contexts. Additionally, the PMd exhibited a slight variation in lateralization degree between task contexts, reflecting the ability of the high-order motor system to adapt to varying task demands. However, connectivity-based lateralization of the sensorimotor cortex was not detected in 10-year-old children (males and females), suggesting that the maturation of connectivity-based lateralization requires prolonged development. In summary, this study demonstrates both task-invariant and task-sensitive connectivity lateralization in sensorimotor cortices that support the resilience and adaptability of skilled visuomotor performance. These findings align with the hierarchical organization of the motor system and underscore the significance of the functional connectivity-based approach in studying functional lateralization.


Asunto(s)
Corteza Motora , Corteza Sensoriomotora , Adulto , Masculino , Femenino , Niño , Humanos , Imagen por Resonancia Magnética , Corteza Motora/fisiología , Corteza Somatosensorial , Mapeo Encefálico
13.
J Neurosci ; 44(26)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38769006

RESUMEN

The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.


Asunto(s)
Corteza Cerebral , Electroencefalografía , Red Nerviosa , Humanos , Recién Nacido , Electroencefalografía/métodos , Femenino , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Masculino , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Recien Nacido Prematuro/fisiología , Neuronas/fisiología
14.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508713

RESUMEN

Economic choice theories usually assume that humans maximize utility in their choices. However, studies have shown that humans make inconsistent choices, leading to suboptimal behavior, even without context-dependent manipulations. Previous studies showed that activation in value and motor networks are associated with inconsistent choices at the moment of choice. Here, we investigated if the neural predispositions, measured before a choice task, can predict choice inconsistency in a later risky choice task. Using functional connectivity (FC) measures from resting-state functional magnetic resonance imaging (rsfMRI), derived before any choice was made, we aimed to predict subjects' inconsistency levels in a later-performed choice task. We hypothesized that rsfMRI FC measures extracted from value and motor brain areas would predict inconsistency. Forty subjects (21 females) completed a rsfMRI scan before performing a risky choice task. We compared models that were trained on FC that included only hypothesized value and motor regions with models trained on whole-brain FC. We found that both model types significantly predicted inconsistency levels. Moreover, even the whole-brain models relied mostly on FC between value and motor areas. For external validation, we used a neural network pretrained on FC matrices of 37,000 subjects and fine-tuned it on our data and again showed significant predictions. Together, this shows that the tendency for choice inconsistency is predicted by predispositions of the nervous system and that synchrony between the motor and value networks plays a crucial role in this tendency.


Asunto(s)
Conducta de Elección , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Conducta de Elección/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Conectoma/métodos , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Asunción de Riesgos
15.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38148152

RESUMEN

The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.


Asunto(s)
Conectoma , Humanos , Masculino , Adulto , Niño , Femenino , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición
16.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38538145

RESUMEN

A classic example of experience-dependent plasticity is ocular dominance (OD) shift, in which the responsiveness of neurons in the visual cortex is profoundly altered following monocular deprivation (MD). It has been postulated that OD shifts also modify global neural networks, but such effects have never been demonstrated. Here, we use wide-field fluorescence optical imaging (WFOI) to characterize calcium-based resting-state functional connectivity during acute (3 d) MD in female and male mice with genetically encoded calcium indicators (Thy1-GCaMP6f). We first establish the fundamental performance of WFOI by computing signal to noise properties throughout our data processing pipeline. Following MD, we found that Δ band (0.4-4 Hz) GCaMP6 activity in the deprived visual cortex decreased, suggesting that excitatory activity in this region was reduced by MD. In addition, interhemispheric visual homotopic functional connectivity decreased following MD, which was accompanied by a reduction in parietal and motor homotopic connectivity. Finally, we observed enhanced internetwork connectivity between the visual and parietal cortex that peaked 2 d after MD. Together, these findings support the hypothesis that early MD induces dynamic reorganization of disparate functional networks including the association cortices.


Asunto(s)
Ratones Endogámicos C57BL , Red Nerviosa , Privación Sensorial , Corteza Visual , Animales , Ratones , Masculino , Femenino , Privación Sensorial/fisiología , Corteza Visual/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Predominio Ocular/fisiología , Período Crítico Psicológico , Vías Visuales/fisiología
17.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38233216

RESUMEN

While functional brain imaging studies in humans suggest that chronic cocaine use alters functional connectivity (FC) within and between key large-scale brain networks, including the default mode network (DMN), the salience network (SN), and the central executive network (CEN), cross-sectional studies in humans are challenging to obtain brain FC prior to cocaine use. Such information is critical to reveal the relationship between individual's brain FC and the subsequent development of cocaine dependence and brain changes during abstinence. Here, we performed a longitudinal study examining functional magnetic resonance imaging (fMRI) data in male rats (n = 7), acquired before cocaine self-administration (baseline), on 1 d of abstinence following 10 d of cocaine self-administration, and again after 30 d of experimenter-imposed abstinence. Using repeated-measures analysis of variance (ANOVA) with network-based statistics (NBS), significant connectivity changes were found between anterior insular cortex (AI) of the SN, retrosplenial cortex (RSC) of the DMN, somatosensory cortex, and caudate-putamen (CPu), with AI-RSC FC showing the most robust changes between baseline and 1 d of abstinence. Additionally, the level of escalated cocaine intake is associated with AI-RSC and AI-CPu FC changes between 1 d and 30 d of abstinence; further, the subjects' AI-RSC FC prior to cocaine intake is a significant moderator for the AI-RSC changes during abstinence. These results provide novel insights into the roles of AI-RSC FC before and after cocaine intake and suggest this circuit to be a potential target to modulate large-scale network and associated behavioral changes in cocaine use disorders.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Humanos , Masculino , Animales , Ratas , Giro del Cíngulo , Mapeo Encefálico/métodos , Corteza Insular , Estudios Longitudinales , Estudios Transversales , Encéfalo , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Red Nerviosa
18.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38050070

RESUMEN

It is challenging to measure how specific aspects of coordinated neural dynamics translate into operations of information processing and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms-such as self-sustained or propagating activity and nonlinear summation of inputs-do not directly give rise to high-level functions. Nevertheless, they already implement simple the information carried by neural activity. Here, we propose that distinct functions, such as stimulus representation, working memory, or selective attention, stem from different combinations and types of low-level manipulations of information or information processing primitives. To test this hypothesis, we combine approaches from information theory with simulations of multi-scale neural circuits involving interacting brain regions that emulate well-defined cognitive functions. Specifically, we track the information dynamics emergent from patterns of neural dynamics, using quantitative metrics to detect where and when information is actively buffered, transferred or nonlinearly merged, as possible modes of low-level processing (storage, transfer and modification). We find that neuronal subsets maintaining representations in working memory or performing attentional gain modulation are signaled by their boosted involvement in operations of information storage or modification, respectively. Thus, information dynamic metrics, beyond detecting which network units participate in cognitive processing, also promise to specify how and when they do it, that is, through which type of primitive computation, a capability that may be exploited for the analysis of experimental recordings.


Asunto(s)
Encéfalo , Cognición , Cognición/fisiología , Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Atención/fisiología , Neuronas/fisiología
19.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38538141

RESUMEN

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Asunto(s)
Magnetoencefalografía , Corteza Motora , Destreza Motora , Humanos , Masculino , Femenino , Adulto , Corteza Motora/fisiología , Destreza Motora/fisiología , Adulto Joven , Magnetoencefalografía/métodos , Ritmo alfa/fisiología , Mano/fisiología , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Vías Nerviosas/fisiología
20.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38589231

RESUMEN

The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.


Asunto(s)
Cognición , Red en Modo Predeterminado , Imagen por Resonancia Magnética , Semántica , Humanos , Masculino , Femenino , Adulto , Cognición/fisiología , Red en Modo Predeterminado/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA