Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353610

RESUMEN

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Incretinas , Adulto , Humanos , Adolescente , Incretinas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Polipéptido Inhibidor Gástrico/uso terapéutico , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 119(13): e2116506119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333651

RESUMEN

SignificanceTirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptores de la Hormona Gastrointestinal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Incretinas/farmacología , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/uso terapéutico
3.
Diabetologia ; 67(7): 1206-1222, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613667

RESUMEN

AIMS/HYPOTHESIS: We conducted a systematic review and network meta-analysis to compare the efficacy and safety of s.c. administered tirzepatide vs s.c. administered semaglutide for adults of both sexes with type 2 diabetes mellitus. METHODS: We searched PubMed and Cochrane up to 11 November 2023 for RCTs with an intervention duration of at least 12 weeks assessing s.c. tirzepatide at maintenance doses of 5 mg, 10 mg or 15 mg once weekly, or s.c. semaglutide at maintenance doses of 0.5 mg, 1.0 mg or 2.0 mg once weekly, in adults with type 2 diabetes, regardless of background glucose-lowering treatment. Eligible trials compared any of the specified doses of tirzepatide and semaglutide against each other, placebo or other glucose-lowering drugs. Primary outcomes were changes in HbA1c and body weight from baseline. Secondary outcomes were achievement of HbA1c target of ≤48 mmol/mol (≤6.5%) or <53 mmol/mol (<7.0%), body weight loss of at least 10%, and safety outcomes including gastrointestinal adverse events and severe hypoglycaemia. We used version 2 of the Cochrane risk-of-bias tool (ROB 2) to assess the risk of bias, conducted frequentist random-effects network meta-analyses and evaluated confidence in effect estimates utilising the Confidence In Network Meta-Analysis (CINeMA) framework. RESULTS: A total of 28 trials with 23,622 participants (44.2% female) were included. Compared with placebo, tirzepatide 15 mg was the most efficacious treatment in reducing HbA1c (mean difference -21.61 mmol/mol [-1.96%]) followed by tirzepatide 10 mg (-20.19 mmol/mol [-1.84%]), semaglutide 2.0 mg (-17.74 mmol/mol [-1.59%]), tirzepatide 5 mg (-17.60 mmol/mol [-1.60%]), semaglutide 1.0 mg (-15.25 mmol/mol [-1.39%]) and semaglutide 0.5 mg (-12.00 mmol/mol [-1.09%]). In between-drug comparisons, all tirzepatide doses were comparable with semaglutide 2.0 mg and superior to semaglutide 1.0 mg and 0.5 mg. Compared with placebo, tirzepatide was more efficacious than semaglutide for reducing body weight, with reductions ranging from 9.57 kg (tirzepatide 15 mg) to 5.27 kg (tirzepatide 5 mg). Semaglutide had a less pronounced effect, with reductions ranging from 4.97 kg (semaglutide 2.0 mg) to 2.52 kg (semaglutide 0.5 mg). In between-drug comparisons, tirzepatide 15 mg, 10 mg and 5 mg demonstrated greater efficacy than semaglutide 2.0 mg, 1.0 mg and 0.5 mg, respectively. Both drugs increased incidence of gastrointestinal adverse events compared with placebo, while neither tirzepatide nor semaglutide increased the risk of serious adverse events or severe hypoglycaemia. CONCLUSIONS/INTERPRETATION: Our data show that s.c. tirzepatide had a more pronounced effect on HbA1c and weight reduction compared with s.c. semaglutide in people with type 2 diabetes. Both drugs, particularly higher doses of tirzepatide, increased gastrointestinal adverse events. REGISTRATION: PROSPERO registration no. CRD42022382594.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptidos Similares al Glucagón , Hipoglucemiantes , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Humanos , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/administración & dosificación , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/administración & dosificación , Péptidos Similares al Glucagón/efectos adversos , Hemoglobina Glucada/metabolismo , Adulto , Glucemia/efectos de los fármacos , Femenino , Masculino , Inyecciones Subcutáneas , Receptor del Péptido 2 Similar al Glucagón , Polipéptido Inhibidor Gástrico
4.
Am J Physiol Endocrinol Metab ; 327(1): E103-E110, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775725

RESUMEN

The incretin axis is an essential component of postprandial insulin secretion and glucose homeostasis. There are two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which exert multiple actions throughout the body. A key cellular target for the incretins are pancreatic ß-cells, where they potentiate nutrient-stimulated insulin secretion. This feature of incretins has made this system an attractive target for therapeutic interventions aimed at controlling glycemia. Here, we discuss the role of GIP in both ß-cells and α-cells within the islet, to stimulate insulin and glucagon secretion, respectively. Moreover, we discuss how glucagon secretion from α-cells has important insulinotropic actions in ß-cells through an axis termed α- to ß-cell communication. These recent advances have elevated the potential of GIP and glucagon as a therapeutic targets, coinciding with emerging compounds that pharmacologically leverage the actions of these two peptides in the context of diabetes and obesity.


Asunto(s)
Polipéptido Inhibidor Gástrico , Glucagón , Secreción de Insulina , Islotes Pancreáticos , Animales , Humanos , Polipéptido Inhibidor Gástrico/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos
5.
Cardiovasc Diabetol ; 23(1): 112, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555463

RESUMEN

BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective antidiabetic drugs with potential cardiovascular benefits. Despite their well-established role in reducing the risk of major adverse cardiovascular events (MACE), their impact on heart failure (HF) remains unclear. Therefore, our study examined the cardioprotective effects of tirzepatide (TZT), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonist. METHODS: A three-steps approach was designed: (i) Meta-analysis investigation with the primary objective of assessing major adverse cardiovascular events (MACE) occurrence from major randomized clinical trials.; (ii) TZT effects on a human cardiac AC16 cell line exposed to normal (5 mM) and high (33 mM) glucose concentrations for 7 days. The gene expression and protein levels of primary markers related to cardiac fibrosis, hypertrophy, and calcium modulation were evaluated. (iii) In silico data from bioinformatic analyses for generating an interaction map that delineates the potential mechanism of action of TZT. RESULTS: Meta-analysis showed a reduced risk for MACE events by TZT therapy (HR was 0.59 (95% CI 0.40-0.79, Heterogeneity: r2 = 0.01, I2 = 23.45%, H2 = 1.31). In the human AC16 cardiac cell line treatment with 100 nM TZT contrasted high glucose (HG) levels increase in the expression of markers associated with fibrosis, hypertrophy, and cell death (p < 0.05 for all investigated markers). Bioinformatics analysis confirmed the interaction between the analyzed markers and the associated pathways found in AC16 cells by which TZT affects apoptosis, fibrosis, and contractility, thus reducing the risk of heart failure. CONCLUSION: Our findings indicate that TZT has beneficial effects on cardiac cells by positively modulating cardiomyocyte death, fibrosis, and hypertrophy in the presence of high glucose concentrations. This suggests that TZT may reduce the risk of diabetes-related cardiac damage, highlighting its potential as a therapeutic option for heart failure management clinical trials. Our study strongly supports the rationale behind the clinical trials currently underway, the results of which will be further investigated to gain insights into the cardiovascular safety and efficacy of TZT.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Polipéptido Inhibidor Gástrico , Receptor del Péptido 2 Similar al Glucagón , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/prevención & control , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamiento farmacológico , Hipertrofia , Hipoglucemiantes/farmacología , Miocitos Cardíacos , Fibrosis , Glucosa , Receptor del Péptido 1 Similar al Glucagón
6.
Cardiovasc Diabetol ; 23(1): 242, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987789

RESUMEN

Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Incretinas , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/farmacología , Animales , Resultado del Tratamiento , Incretinas/uso terapéutico , Incretinas/efectos adversos , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Transducción de Señal/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/efectos adversos , Biomarcadores/sangre , Medición de Riesgo , Receptor del Péptido 2 Similar al Glucagón , Polipéptido Inhibidor Gástrico
7.
Cardiovasc Diabetol ; 23(1): 174, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762719

RESUMEN

BACKGROUND: Growth differentiation factor 15 (GDF15) is a mitokine, the role of which, total or H-specific, in modulating energy metabolism and homeostasis in obesity-related diseases, such as metabolic dysfunction associated steatotic liver disease (MASLD), has not been fully elucidated in adult humans. We aimed to investigate the fasting and stimulated levels of GDF15, total and H-specific, glucose-dependent insulinotropic polypeptide (GIP) and C-peptide, in two physiology interventional studies: one focusing on obesity, and the other on MASLD. METHODS: Study 1 investigated individuals with normal weight or with obesity, undergoing a 3-h mixed meal test (MMT); and study 2, examined adults with MASLD and controls undergoing a 120-min oral glucose tolerance test (OGTT). Exploratory correlations of total and H-specific GDF15 with clinical, hormonal and metabolomic/lipidomic parameters were also performed. RESULTS: In study 1, 15 individuals were included per weight group. Fasting and postprandial total and H-specific GDF15 were similar between groups, whereas GIP was markedly higher in leaner individuals and was upregulated following a MMT. Baseline and postprandial C-peptide were markedly elevated in people with obesity compared with lean subjects. GIP was higher in leaner individuals and was upregulated after a MMT, while C-peptide and its overall AUC after a MMT was markedly elevated in people with obesity compared with lean subjects. In study 2, 27 individuals were evaluated. Fasting total GDF15 was similar, but postprandial total GDF15 levels were significantly higher in MASLD patients compared to controls. GIP and C-peptide remained unaffected. The postprandial course of GDF15 was clustered among those of triglycerides and molecules of the alanine cycle, was robustly elevated under MASLD, and constituted the most notable differentiating molecule between healthy and MASLD status. We also present robust positive correlations of the incremental area under the curve of total and H-specific GDF15 with a plethora of lipid subspecies, which remained significant after adjusting for confounders. CONCLUSION: Serum GDF15 levels do not differ in relation to weight status in hyperlipidemic but otherwise metabolically healthy individuals. In contrast, GDF15 levels are significantly increased in MASLD patients at baseline and they remain significantly higher compared to healthy participants during OGTT, pointing to a role for GDF15 as a mitokine with important roles in the pathophysiology and possibly therapeutics of MASLD. Trial registration ClinicalTrials.gov NCT03986684, NCT04430946.


Asunto(s)
Biomarcadores , Péptido C , Polipéptido Inhibidor Gástrico , Factor 15 de Diferenciación de Crecimiento , Hiperlipidemias , Obesidad , Periodo Posprandial , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , Glucemia/metabolismo , Péptido C/sangre , Estudios de Casos y Controles , Hígado Graso/sangre , Hígado Graso/diagnóstico , Polipéptido Inhibidor Gástrico/sangre , Prueba de Tolerancia a la Glucosa , Factor 15 de Diferenciación de Crecimiento/sangre , Hiperlipidemias/sangre , Hiperlipidemias/diagnóstico , Obesidad/sangre , Obesidad/diagnóstico , Factores de Tiempo , Regulación hacia Arriba
8.
Microb Pathog ; 194: 106823, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059698

RESUMEN

Antibiotic resistance is increasing among Gram-negative bacteria, prompting the development of new antibiotics as well as alternative treatment approaches. Klebsiella pneumoniae Carbapenemases (KPC) has become a major concern in the treatment of infections, since KPC-producing bacteria are resistant to a number of ß -lactam and non ß-lactam antibiotics in addition to hydrolyzing carbapenemases. The aim of this study is to examine the synergistic effect of human Glucose-dependent Insulinotropic Polypeptide (GIP) on KPC producer. The K. pneumoniae isolates were identified by using biochemical tests and PCR genotyping. The disc diffusion method was used to assess the antimicrobial susceptibility of each isolate, and the modified Hodge test (MHT) was used to find carbapenemases. Agar well diffusion and minimum inhibitory concentration (MIC) assays were used to validate the synergistic effect of GIP against Klebsiella species. MIC values of chosen antimicrobial compounds demonstrated a considerable synergism impact when combined with human GIP, particularly against KPC strains. The antibacterial activity of the antimicrobial compounds was boosted by 4-16 times due to human GIP, reducing the MIC values. The fractional inhibitory concentration (FIC) ranged from 0.032 to 0.25 for examined antibiotics. Thus, GIP can be considered an antibacterial adjuvant with the potential to supplement the current antibiotic spectrum.

9.
Dev Growth Differ ; 66(2): 172-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243758

RESUMEN

Single nucleotide variants (SNVs), including single nucleotide polymorphisms, are often associated with morphological and/or physiological abnormalities in various organisms. Targeted genomic DNA can be amplified and directly sequenced to detect these mutations, but this method is relatively time consuming and expensive. We recently established the heteroduplex mobility assay to detect genetic mutations as an easy, low-cost method in genome editing, but detecting such small genetic differences remains difficult. Here, we developed a new, simple method to detect single nucleotide changes in the zebrafish genome by polymerase chain reaction (PCR) and electrophoresis. We first designed a specific single stranded DNA with four tandem guanine nucleotides inserted beside the mutation site, called guanine-inserted primer (GIP). When reannealing, hybridized complexes of GIP and PCR amplicons with or without 1-bp-mutated alleles form different bulge structures, presumably leading to different mobilities on a polyacrylamide gel. This GIP-interacting mobility assay is easy to use; therefore, it could contribute to the detection of SNVs in any organism.


Asunto(s)
ADN , Pez Cebra , Animales , Pez Cebra/genética , ADN/genética , Mutación , Nucleótidos , Genómica
10.
Diabetes Obes Metab ; 26(4): 1454-1463, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38302718

RESUMEN

AIMS: To assess the efficacy and safety of tirzepatide versus insulin glargine in people with type 2 diabetes (T2D) by baseline body mass index (BMI). MATERIALS AND METHODS: Participants with T2D from the Phase 3 SURPASS-AP-Combo trial (NCT04093752) were categorized into three BMI subgroups (normal weight [<25 kg/m2 ], overweight [≥25 and <30 kg/m2 ], and obese [≥30 kg/m2 ]) according to World Health Organization criteria. Exploratory outcomes including glycaemic control, body weight, cardiometabolic risk, and safety were compared among three tirzepatide doses (5, 10 or 15 mg) and insulin glargine. RESULTS: Of 907 participants, 235 (25.9%) had a BMI <25 kg/m2 , 458 (50.5%) a BMI ≥25 to <30 kg/m2 , and 214 (23.6%) a BMI ≥30 kg/m2 at baseline. At Week 40, all tirzepatide doses led to a greater reduction in mean glycated haemoglobin (HbA1c; -2.0% to -2.8% vs. -0.8% to -1.0%, respectively) and percent change in body weight (-5.5% to -10.8% vs. 1.0% to 2.5%, respectively) versus insulin glargine, across the BMI subgroups. Compared with insulin glargine, a higher proportion of tirzepatide-treated participants achieved treatment goals for HbA1c and body weight reduction. Improvements in other cardiometabolic indicators were also observed with tirzepatide across all the BMI subgroups. The safety profile of tirzepatide was similar across all subgroups by BMI. The most frequent adverse events with tirzepatide were gastrointestinal-related events and decreased appetite, with relatively few events leading to treatment discontinuation. CONCLUSIONS: In participants with T2D, regardless of baseline BMI, treatment with tirzepatide resulted in statistically significant and clinically meaningful glycaemic reductions and body weight reductions compared with insulin glargine, with a safety profile consistent with previous reports.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Polipéptido Inhibidor Gástrico , Receptor del Péptido 2 Similar al Glucagón , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Insulina Glargina/efectos adversos , Índice de Masa Corporal , Hipoglucemiantes/efectos adversos , Hemoglobina Glucada , Glucemia , Peso Corporal , Pérdida de Peso , Enfermedades Cardiovasculares/inducido químicamente
11.
Diabetes Obes Metab ; 26(2): 473-481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37853960

RESUMEN

AIMS: To evaluate gastrointestinal adverse events (AEs) and the impact of nausea, vomiting or diarrhoea (N/V/D) and any gastrointestinal (GI) AEs overall on weight change with tirzepatide across the SURPASS-1 to -5 clinical trials. MATERIALS AND METHODS: Participants with type 2 diabetes were randomized to receive once-weekly tirzepatide (5, 10 or 15 mg) or comparator (placebo, semaglutide 1 mg once weekly, or titrated daily basal insulins) as monotherapy or added on to background antihyperglycaemic medication(s). This post hoc analysis subdivided participants within each trial into subgroups that self-reported (yes/no) any N/V/D or GI AEs. Change from baseline in body weight at the primary timepoint was assessed within each trial and subgroup. Mediation analyses were conducted to evaluate the contribution of direct and indirect (mediated by N/V/D or GI AEs) effects of tirzepatide on weight change versus comparators. RESULTS: Across the SURPASS-1 to -5 trials (N = 6263), nausea (12%-24%), diarrhoea (12%-22%), and vomiting (2%-13%) were the most common GI AEs reported with tirzepatide; these were transient and of mild-to-moderate severity. Mean weight reduction at the primary timepoint with tirzepatide was consistent between participants who reported N/V/D (-6.2 to -14.9 kg) and those who did not report N/V/D (-6.2 to -13.3 kg). Mean weight reduction was significantly (P < 0.01) greater with tirzepatide compared with placebo, semaglutide 1 mg, and basal insulins within the N/V/D and GI AEs subgroups. Mediation analyses suggested minimal contribution (<6%) of N/V/D and GI AEs to the overall difference in weight change between tirzepatide and comparators. CONCLUSIONS: Superior weight reduction with tirzepatide versus comparators appears to be independent of reported N/V/D or GI AEs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Diarrea/inducido químicamente , Polipéptido Inhibidor Gástrico/efectos adversos , Hemoglobina Glucada , Hipoglucemiantes/efectos adversos , Náusea/inducido químicamente , Vómitos/inducido químicamente , Pérdida de Peso
12.
Bioorg Med Chem ; 100: 117630, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330849

RESUMEN

Tirzepatide, the first approved dual GLP-1/GIP receptor agonist (RA), has achieved better clinical outcomes than other GLP-1RAs. However, it is an imbalanced dual GIP/GLP-1 RA, and it remains unclear whether the degree of imbalance is optimal. Here, we present a novel long-acting dual GLP-1/GIP RA that exhibits better activity than tirzepatide toward GLP-1R. A candidate conjugate, D314, identified via peptide design, synthesis, conjugation, and experimentation, was evaluated using chronic studies in db/db and diet induced obese (DIO) mice. D314 achieved favorable blood glucose and body weight-lowering effects, equal to those of tirzepatide. Its half-life in dogs (T1/2: 78.3 ± 14.01 h) reveals its suitability for once-weekly administration in humans. This preclinical study suggests the potential role of D314 as an effective agent for treating T2DM and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Receptores de la Hormona Gastrointestinal , Animales , Perros , Humanos , Ratones , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología , Obesidad/tratamiento farmacológico , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/uso terapéutico
13.
Artículo en Inglés | MEDLINE | ID: mdl-38850368

RESUMEN

PURPOSE: Tirzepatide promotes weight loss and reduces risk factors for cardiovascular disease (CVD) in adults with overweight and obesity. We examined the number of US adults eligible for tirzepatide and its impact on obesity and CVD events. METHODS: We identified US adults aged ≥ 18 years from the cross-sectional US National Health and Nutrition Examination Survey (NHANES) 2015-2018 eligible for tirzepatide based on SURMOUNT-1 trial eligibility criteria. Weight changes in SURMOUNT-1 from tirzepatide 15 mg treatment were used to project the impact on weight change and obesity prevalence in the population assuming titration to this dosage. We estimated 10-year CVD risks from BMI-based Framingham CVD risk scores before and after applying tirzepatide 15 mg treatment BMI and risk factor effects from SURMOUNT-1, the differences in estimated risks multiplied by the eligible NHANES weighted population representing the estimated "preventable" CVD events. RESULTS: We identified 4015 US adults (estimated population size of 93.4 million [M]) to fit SURMOUNT-1 eligibility criteria, representing 38% of US adults. When the effects of 15 mg tirzepatide were applied, we estimated 70.6% (65.9 M) and 56.7% (53.0 M) of adults to show ≥ 15% and ≥ 20% reductions in weight, respectively, translating to 58.8% (55.0 M) fewer persons with obesity. Among those without CVD, estimated 10-year CVD risks were 10.1% "before" and 7.7% "after" tirzepatide "treatment" reflecting a 2.4% absolute (and 23.6% relative) risk reduction translating to 2.0 million preventable CVD events over 10 years. CONCLUSION: Tirzepatide treatment in appropriate US adults may substantially reduce obesity prevalence and CVD events, impacting beneficially on associated healthcare costs.

14.
BMC Endocr Disord ; 24(1): 38, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481208

RESUMEN

BACKGROUND: Glucagon is secreted from pancreatic alpha cells in response to low blood glucose and increases hepatic glucose production. Furthermore, glucagon enhances hepatic protein and lipid metabolism during a mixed meal. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from gut endocrine cells during meals and control glucose homeostasis by potentiating insulin secretion and inhibiting food intake. Both glucose homeostasis and food intake have been reported to be affected by circadian rhythms and vice versa. In this study, we investigated whether the secretion of glucagon, GLP-1 and GIP was affected by circadian rhythms. METHODS: A total of 24 healthy men with regular sleep schedules were examined for 24 h at the hospital ward with 15 h of wakefulness and 9 h of sleep. Food intake was standardized, and blood samples were obtained every third hour. Plasma concentrations of glucagon, GLP-1 and GIP were measured, and data were analyzed by rhythmometric statistical methods. Available data on plasma glucose and plasma C-peptide were also included. RESULTS: Plasma concentrations of glucagon, GLP-1, GIP, C-peptide and glucose fluctuated with a diurnal 24-h rhythm, with the highest levels during the day and the lowest levels during the night: glucagon (p < 0.0001, peak time 18:26 h), GLP-1 (p < 0.0001, peak time 17:28 h), GIP (p < 0.0001, peak time 18:01 h), C-peptide (p < 0.0001, peak time 17.59 h), and glucose (p < 0.0001, peak time 23:26 h). As expected, we found significant correlations between plasma concentrations of C-peptide and GLP-1 and GIP but did not find correlations between glucose concentrations and concentrations of glucagon, GLP-1 and GIP. CONCLUSIONS: Our results demonstrate that under meal conditions that are similar to that of many free-living individuals, plasma concentrations of glucagon, GLP-1 and GIP were observed to be higher during daytime and evening than overnight. These findings underpin disturbed circadian rhythm as a potential risk factor for diabetes and obesity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06166368. Registered 12 December 2023.


Asunto(s)
Péptido 1 Similar al Glucagón , Glucagón , Masculino , Humanos , Glucagón/metabolismo , Insulina , Péptido C , Polipéptido Inhibidor Gástrico , Glucemia/metabolismo , Glucosa/farmacología , Ritmo Circadiano
15.
Endocr Pract ; 30(3): 292-303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38122931

RESUMEN

OBJECTIVE: To review clinical trial data for incretin therapies that are approved or in late-stage development for overweight or obesity management, along with clinical implications of these therapies and future directions. METHODS: We searched for clinical trials involving incretin therapies studied specifically for overweight or obesity management in ClinicalTrials.gov and PubMed from registry inception through December 2023. RESULTS: Glucagon-like peptide-1 (GLP-1) receptor agonism, alone and in combination with glucose-dependent insulinotropic polypeptide (GIP) receptor agonism or glucagon agonism, leads to significant weight reduction in people with overweight or obesity. Newer incretin therapies have demonstrated weight reduction between 15% to 25%, far outpacing non-incretin therapies for weight management and achieving levels of weight loss that may prevent weight-related complications. However, the discontinuation of incretin therapies is associated with weight regain. The main side effects of incretin therapies are transient, mild-to-moderate gastrointestinal side effects - nausea, diarrhea, constipation, and vomiting - that commonly occur in the first 4 to 8 weeks of treatment. There is a rich late-stage pipeline of incretin therapies for weight management, consisting of oral GLP-1 receptor agonists, dual GLP-1/GIP receptor agonists, dual GLP-1/glucagon receptor agonists, triple GLP-1/GIP/glucagon receptor agonists, and combination therapies with nonincretin drugs. CONCLUSION: Newer incretin therapies for weight management have the potential to improve the treatment for overweight and obesity, the treatment and prevention of weight-related complications, and the individualization of weight management. Ensuring that these therapies are accessible - and that treatment with them is consistent and sustainable - is necessary to translate findings from trials into the real world.


Asunto(s)
Diabetes Mellitus Tipo 2 , Manejo de la Obesidad , Humanos , Incretinas/uso terapéutico , Incretinas/farmacología , Sobrepeso/tratamiento farmacológico , Péptido 1 Similar al Glucagón/uso terapéutico , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/uso terapéutico , Receptores de Glucagón/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Pérdida de Peso , Receptor del Péptido 1 Similar al Glucagón/agonistas
16.
J Endocrinol Invest ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141075

RESUMEN

PURPOSE: Randomized controlled trials with tirzepatide (TZP) displayed unprecedented glucose and body weight lowering efficacy in individuals with type 2 diabetes and/or obesity and a safety profile similar to that of glucagon-like peptide-1 receptor agonists (GLP-1RA), mainly characterized by gastrointestinal (GI) adverse events (AE). Concerns on diabetic retinopathy, pancreato-biliary disorders, and medullary thyroid cancer were also addressed. We aimed to investigate whether the same safety issues emerged from the FDA Adverse Event Reporting System (FAERS) post-marketing surveillance database. METHODS: OpenVigil 2.1-MedDRA-v24 and AERSMine (data 2004Q1-2023Q3) were used to query the FAERS database. Reports of GI AE, diabetic retinopathy, pancreato-biliary disorders, and medullary thyroid cancer were investigated. The analysis was then filtered for age, gender, and designation as primary suspect. AE occurrence with TZP was compared to insulin, sodium-glucose cotransporter-2 inhibitors, metformin, and GLP-1RA. RESULTS: Disproportionate reporting of GI [i.e., nausea (ROR 4.01, 95% CI 3.85-4.19)] and pancreato-biliary disorders [i.e., pancreatitis (ROR 3.63, 95% CI 3.15-4.19)], diabetic retinopathy (ROR 4.14, 95% CI 2.34-7.30), and medullary thyroid cancer (ROR 13.67, 95% CI 4.35-42.96) was detected. TZP exhibited a similar risk of GI AE and medullary thyroid cancer and a lower risk of most pancreato-biliary AE and diabetic retinopathy vs. GLP-1RA. CONCLUSIONS: TZP was associated with an increased risk of specific AE. However, its safety profile was similar to that of GLP-1RA, without increased risk of pancreato-biliary AE, diabetic retinopathy, and medullary thyroid cancer.

17.
J Endocrinol Invest ; 47(1): 213-221, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37344722

RESUMEN

OBJECTIVE: A paradoxical GH rise after the glucose load (GH-Par) is described in about one-third of acromegalic patients. Here, we evaluated the GH profile in subjects with and without acromegaly aiming to refine the definition of GH-Par. DESIGN: Observational case-control study. METHODS: Our cohort consisted of 60 acromegalic patients, and two groups of subjects presenting suppressed GH (< 0.4 µg/L) and high (non-acro↑IGF-1, n = 116) or normal IGF-1 levels (non-acro, n = 55). The distribution of GH peaks ≥ 120% from baseline, insulin, and glucose levels were evaluated over a 180-min time interval after glucose intake. RESULTS: A similar proportion of subjects in all three groups shows a GH ratio of ≥ 120% starting from 120 min. Re-considering the definition of paradoxical increase of GH within 90 min, we observed that the prevalence of GH peaks ≥ 120% was higher in acromegaly than in non-acro↑IGF-1 and non-acro (respectively 42%, 16%, and 7%, both p < 0.001). In patients without GH-Par, a late GH rebound was observed in the second part of the curve. Higher glucose peak (p = 0.038), slower decline after load, 20% higher glucose exposure (p = 0.015), and a higher prevalence of diabetes (p = 0.003) characterized acromegalic patients with GH-Par (with respect to those without). CONCLUSIONS: GH-Par response may be defined as a 20% increase in the first 90 min after glucose challenge. GH-Par, common in acromegaly and associated with an increased prevalence of glucose metabolism abnormalities, is found also in a subset of non-acromegalic subjects with high IGF-1 levels, suggesting its possible involvement in the early phase of the disease.


Asunto(s)
Acromegalia , Hormona de Crecimiento Humana , Humanos , Acromegalia/epidemiología , Acromegalia/metabolismo , Glucosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hormona de Crecimiento Humana/metabolismo , Estudios de Casos y Controles
18.
J Assist Reprod Genet ; 41(2): 323-332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38133877

RESUMEN

OBJECTIVE: This study is to discover hormone pathways active in early cleaving human embryos. METHODS: A list of 152 hormones and receptors were compiled to query the microarray database of mRNAs in 8-cell human embryos, two lines of human embryonic stem cells plus human fibroblasts before and after induced pluripotency. RESULTS: Over half of the 152 hormones and receptors were silent on the arrays of all cell types, and more were detected at high or moderate levels on the 8-cell arrays than on the pluripotent cell or fibroblast arrays. Eight hormone family genes were uniquely detected at least 22-fold higher on the 8-cell arrays than the stem cell arrays: AVPI1, CCK, CORT, FSTL4, GIP, GPHA2, OXT, and PPY suggesting novel roles for these proteins in early development. Oxytocin was detected by pilot immunoassay in culture media collected from Day 3 embryos. Robust detection of CRHR1 and EPOR suggests the 8-cell embryo may be responsive to maternal CRH and EPO. The over-expression of POMC and GHITM suggests POMP peptide products may have undiscovered roles in early development and GHITM may contribute to mitochondrial remodeling. Under-detected on the 8-cell arrays at least tenfold were two key enzymes in steroid biosynthesis, DHCR24 and FDPS. CONCLUSIONS: The 8-cell human embryo may be secreting oxytocin, which could stimulate its own progress down the fallopian tube as well as play a role in early neural precursor development. The 8-cell embryo does not synthesize reproductive steroid hormones. As previously reported for growth factor families, the early embryo over-expresses more hormones than hormone receptors.


Asunto(s)
Fibroblastos , Oxitocina , Femenino , Humanos , Oxitocina/genética , Oxitocina/metabolismo , Fibroblastos/metabolismo , Embrión de Mamíferos , Análisis por Micromatrices , Esteroides/metabolismo
19.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473802

RESUMEN

Glucose-insulinotropic polypeptide (GIP) is an incretin hormone that induces insulin secretion and decreases blood glucose levels. In addition, it has been reported to suppress osteoclast formation. Native GIP is rapidly degraded by dipeptidyl peptidase-4 (DPP-4). (D-Ala2)GIP is a newly developed GIP analog that demonstrates enhanced resistance to DPP-4. This study aimed to evaluate the influence of (D-Ala2)GIP on osteoclast formation and bone resorption during lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. In vivo, mice received supracalvarial injections of LPS with or without (D-Ala2)GIP for 5 days. Osteoclast formation and bone resorption were evaluated, and TNF-α and RANKL expression were measured. In vitro, the influence of (D-Ala2)GIP on RANKL- and TNF-α-induced osteoclastogenesis, LPS-triggered TNF-α expression in macrophages, and RANKL expression in osteoblasts were examined. Compared to the LPS-only group, calvariae co-administered LPS and (D-Ala2)GIP led to less osteoclast formation, lower bone resorption, and decreased TNF-α and RANKL expression. (D-Ala2)GIP inhibited osteoclastogenesis induced by RANKL and TNF-α and downregulated TNF-α expression in macrophages and RANKL expression in osteoblasts in vitro. Furthermore, (D-Ala2)GIP suppressed the MAPK signaling pathway. The results suggest that (D-Ala2)GIP dampened LPS-triggered osteoclast formation and bone resorption in vivo by reducing TNF-α and RANKL expression and directly inhibiting osteoclastogenesis.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Ratones , Osteoclastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Glucosa/metabolismo , Resorción Ósea/metabolismo , Péptidos/metabolismo
20.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612640

RESUMEN

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Hepatopatías , Enfermedades Metabólicas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/uso terapéutico , Péptido 1 Similar al Glucagón/uso terapéutico , Incretinas/uso terapéutico , Receptores Acoplados a Proteínas G , Receptores de Glucagón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA