Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2210439120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897982

RESUMEN

How does neural activity drive muscles to produce behavior? The recent development of genetic lines in Hydra that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of Hydra's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles. With these assumptions, we can robustly reproduce a basic set of Hydra's behaviors. We can further explain puzzling experimental observations, including the dual timescale kinetics observed in muscle activation and the engagement of ectodermal and endodermal muscles in different behaviors. This work delineates the spatiotemporal control space of Hydra movement and can serve as a template for future efforts to systematically decipher the transformations in the neural basis of behavior.


Asunto(s)
Hydra , Animales , Hydra/fisiología , Calcio , Músculos , Movimiento
2.
Proc Natl Acad Sci U S A ; 119(29): e2203257119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858299

RESUMEN

How did cells of early metazoan organisms first organize themselves to form a body axis? The canonical Wnt pathway has been shown to be sufficient for induction of axis in Cnidaria, a sister group to Bilateria, and is important in bilaterian axis formation. Here, we provide experimental evidence that in cnidarian Hydra the Hippo pathway regulates the formation of a new axis during budding upstream of the Wnt pathway. The transcriptional target of the Hippo pathway, the transcriptional coactivator YAP, inhibits the initiation of budding in Hydra and is regulated by Hydra LATS. In addition, we show functions of the Hippo pathway in regulation of actin organization and cell proliferation in Hydra. We hypothesize that the Hippo pathway served as a link between continuous cell division, cell density, and axis formation early in metazoan evolution.


Asunto(s)
Vía de Señalización Hippo , Hydra , Morfogénesis , Animales , Tipificación del Cuerpo , Hydra/genética , Hydra/crecimiento & desarrollo , Hydra/metabolismo , Morfogénesis/genética , Transcripción Genética , Proteínas Señalizadoras YAP/metabolismo
3.
Chemistry ; : e202402808, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207820

RESUMEN

The integration of polymers, supramolecular macrocycles and aggregation-induced emission (AIE) molecules provides numerous possibilities for constructing various functional supramolecular systems. Herein, we constructed supramolecular assembled systems based on discrete macrocyclic polymer hosts via the cooperation of hydra-headed macrocycles containing two or three pillar[5]arene units (defined as P2, P3), the block polymer F127 and AIE molecules (alkyl-cyano modified tetraphenylethene, alkyl-triazole-cyano modified 9,10-distyrylanthracene, defined as TPE-(CN)4 and DSA-(TACN)2). Compared with the binary assembly between hydra-headed hosts or F127 and AIE molecules, cascaded supramolecular assembly-induced emission enhancement (SAIEE) in aqueous solution was achieved in discrete macrocyclic polymer-based supramolecular assembled systems. Considering the cascaded SAIEE performance, we have successfully applied discrete macrocyclic polymer-based supramolecular assembled systems to bioimaging and constructed an artificial light-harvesting system (LHs) to explore more potential applications. The supramolecular assembly form of discrete macrocyclic polymers hosts and AIE molecules proposed in this work provides new inspiration for the construction and application of high-performance supramolecular luminescent systems.

4.
J Exp Biol ; 227(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39155640

RESUMEN

Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.


Asunto(s)
Hydra , Fototaxis , Animales , Hydra/fisiología , Fototaxis/fisiología , Conducta Animal/fisiología , Respuesta de Saciedad/fisiología
5.
J Theor Biol ; : 111958, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362359

RESUMEN

Although demographic studies have failed to find evidence of aging in certain animal species, classic evolutionary theories of aging struggle to explain how evolution could favor agelessness in such cases. Here, we develop mathematical models of the disposable soma theory to identify conditions in which agelessness would be evolutionarily favored. For any given type of damage that could accumulate and cause age-accelerating mortality risk, we find that evolution could select for its complete removal if the mortality risk it poses is severe enough and its repair does not pose too large of a penalty to reproduction. Environmental factors such as extrinsic mortality and the form of population density-dependent regulation also play a large role in determining the optimal rate of aging and whether agelessness should be evolutionarily favored. However, in a system with multiple sources of damage and multiple independent repair processes, avoiding aging is rarely evolutionarily favorable. Pleiotropic repair processes, such as those that could be present in asexual fissioning organisms, make agelessness more likely but do not guarantee it. Our results indicate that agelessness could be favored by evolution in narrow contexts but that multiple types of damage and repair make agelessness unlikely to arise in sufficiently complex organisms.

6.
J Math Biol ; 88(6): 60, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600396

RESUMEN

One-dimensional discrete-time population models, such as those that involve Logistic or Ricker growth, can exhibit periodic and chaotic dynamics. Expanding the system by one dimension to incorporate epidemiological interactions causes an interesting complexity of new behaviors. Here, we examine a discrete-time two-dimensional susceptible-infectious (SI) model with Ricker growth and show that the introduction of infection can not only produce a distinctly different bifurcation structure than that of the underlying disease-free system but also lead to counter-intuitive increases in population size. We use numerical bifurcation analysis to determine the influence of infection on the location and types of bifurcations. In addition, we examine the appearance and extent of a phenomenon known as the 'hydra effect,' i.e., increases in total population size when factors, such as mortality, that act negatively on a population, are increased. Previous work, primarily focused on dynamics at fixed points, showed that the introduction of infection that reduces fecundity to the SI model can lead to a so-called 'infection-induced hydra effect.' Our work shows that even in such a simple two-dimensional SI model, the introduction of infection that alters fecundity or mortality can produce dynamics can lead to the appearance of a hydra effect, particularly when the disease-free population is at a cycle.


Asunto(s)
Epidemias , Dinámica Poblacional , Densidad de Población , Fertilidad , Modelos Biológicos
7.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33727416

RESUMEN

As biological invasions continue to increase globally, eradication programs have been undertaken at significant cost, often without consideration of relevant ecological theory. Theoretical fisheries models have shown that harvest can actually increase the equilibrium size of a population, and uncontrolled studies and anecdotal reports have documented population increases in response to invasive species removal (akin to fisheries harvest). Both findings may be driven by high levels of juvenile survival associated with low adult abundance, often referred to as overcompensation. Here we show that in a coastal marine ecosystem, an eradication program resulted in stage-specific overcompensation and a 30-fold, single-year increase in the population of an introduced predator. Data collected concurrently from four adjacent regional bays without eradication efforts showed no similar population increase, indicating a local and not a regional increase. Specifically, the eradication program had inadvertently reduced the control of recruitment by adults via cannibalism, thereby facilitating the population explosion. Mesocosm experiments confirmed that adult cannibalism of recruits was size-dependent and could control recruitment. Genomic data show substantial isolation of this population and implicate internal population dynamics for the increase, rather than recruitment from other locations. More broadly, this controlled experimental demonstration of stage-specific overcompensation in an aquatic system provides an important cautionary message for eradication efforts of species with limited connectivity and similar life histories.


Asunto(s)
Ecosistema , Especies Introducidas , Modelos Teóricos , Conducta Predatoria , Animales , Organismos Acuáticos , Biodiversidad , Densidad de Población , Dinámica Poblacional
8.
Ecotoxicol Environ Saf ; 278: 116442, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728946

RESUMEN

Gadolinium (Gd) is among the rare earth elements extensively utilized in both industrial and medical applications. The latter application appears to contribute to the rise in Gd levels in aquatic ecosystems, as it is excreted via urine from patients undergoing MRI scans and often not captured by wastewater treatment systems. The potential environmental and biological hazards posed by gadolinium exposure are still under investigation. This study aimed to assess the teratogenic risk posed by a gadolinium chelate on the freshwater cnidarian Hydra vulgaris. The experimental design evaluated the impact of pure Gadodiamide (25 µg/l, 50 µg/l, 100 µg/l, 500 µg/l) and its commercial counterpart compound (Omniscan®; 100 µg/l, 500 µg/l, 782.7 mg/l) at varying concentrations using the Teratogenic Risk Index (TRI). Here we showed a moderate risk (Class III of TRI) following exposure to both tested formulations at concentrations ≥ 100 µg/l. Given the potential for similar concentrations in aquatic environments, particularly near wastewater discharge points, a teratogenic risk assessment using the Hydra regeneration assay was conducted on environmental samples collected from three rivers (Tiber, Almone, and Sacco) in Central Italy. Additionally, chemical analysis of field samples was performed using ICP-MS. Analysis of freshwater samples revealed low Gd concentrations (≤ 0.1 µg/l), despite localized increases near domestic and/or industrial wastewater discharge sites. Although teratogenic risk in environmental samples ranged from high (Class IV of TRI) to negligible (Class I of TRI), the low Gd concentrations, particularly when compared to higher levels of other contaminants like arsenic and heavy metals, preclude establishing a direct cause-effect relationship between Gd and observed teratogenic risks in environmental samples. Nevertheless, the teratogenic risks observed in laboratory tests warrant further investigation.


Asunto(s)
Agua Dulce , Hydra , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Animales , Medición de Riesgo , Hydra/efectos de los fármacos , Agua Dulce/química , Gadolinio/toxicidad , Gadolinio/análisis , Italia , Teratógenos/toxicidad , Gadolinio DTPA/toxicidad , Monitoreo del Ambiente/métodos , Ríos/química
9.
BMC Biol ; 21(1): 126, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280616

RESUMEN

BACKGROUND: The development of nanoscale secondary ion mass spectrometry (NanoSIMS) has revolutionized the study of biological tissues by enabling, e.g., the visualization and quantification of metabolic processes at subcellular length scales. However, the associated sample preparation methods all result in some degree of tissue morphology distortion and loss of soluble compounds. To overcome these limitations an entirely cryogenic sample preparation and imaging workflow is required. RESULTS: Here, we report the development of a CryoNanoSIMS instrument that can perform isotope imaging of both positive and negative secondary ions from flat block-face surfaces of vitrified biological tissues with a mass- and image resolution comparable to that of a conventional NanoSIMS. This capability is illustrated with nitrogen isotope as well as trace element mapping of freshwater hydrozoan Green Hydra tissue following uptake of 15N-enriched ammonium. CONCLUSION: With a cryo-workflow that includes vitrification by high pressure freezing, cryo-planing of the sample surface, and cryo-SEM imaging, the CryoNanoSIMS enables correlative ultrastructure and isotopic or elemental imaging of biological tissues in their most pristine post-mortem state. This opens new horizons in the study of fundamental processes at the tissue- and (sub)cellular level. TEASER: CryoNanoSIMS: subcellular mapping of chemical and isotopic compositions of biological tissues in their most pristine post-mortem state.


Asunto(s)
Microscopía por Crioelectrón , Microscopía Electrónica de Rastreo
10.
Bull Environ Contam Toxicol ; 112(4): 56, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565802

RESUMEN

The aim of this paper was to evaluate whether symbiotic cooperation between green hydra (Hydra viridissima) and photoautotrophic alga gives higher resistance of the preservation of DNA integrity compared to brown hydra (Hydra oligactis). Norflurazon concentrations were 0.061 or 0.61 mg/L and UV-B light 254 nm, 0.023mWcm- 2 applied separately or simultaneously. By alkaline comet assay primary DNA damage was assessed and cytotoxicity by fluorescent staining. Norflurazon at 0.61 mg L- 1 significantly increased DNA damage in brown hydras compared to the control (6.17 ± 0.6 µm, 5.2 ± 1.7% vs. 2.9 ± 0.2 µm, 1.2 ± 0.2%). Cytotoxicity was significantly elevated, being higher in brown hydras (25.7 ± 3.5% vs. 8.2 ± 0.2%). UV-B irradiation induced significant DNA damage in brown hydras (13.5 ± 1.0 µm, 4.1 ± 1.0%). Simultaneous exposure to UV-B and norflurazon led to a synergistic DNA damaging. The frequency of cytotoxicity and hedgehog nucleoids was more pronounced in brown (78.3 ± 9.4%; 56.4 ± 6.0%) than in green hydras (34.7 ± 2.5%; 24.2 ± 0.6%). Evolutionary established symbiotic cooperation proved to provide resistance against cyto/genotoxicity.


Asunto(s)
Hydra , Animales , Hydra/genética , Simbiosis , ADN , Daño del ADN
11.
Dev Biol ; 488: 74-80, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577031

RESUMEN

We present a new transgenic Hydra vulgaris line expressing a distinct fluorescent protein in each of the three cell lineages of the adult polyp. Plasmid microinjection was used to generate a novel transgenic Hydra line expressing the yellow fluorescent protein YPet in the ectodermal epithelial cell lineage. Tissue grafting was then used to combine a YPet animal with a line that expresses DsRed2 in the endodermal epithelial lineage and eGFP in the interstitial cell (i-cell) lineage. The resulting triple-labeled ("tricolored") transgenic line provides, for the first time, a Hydra in which all three cell lineages can be imaged simultaneously in vivo. We show example confocal images of whole animals and individual cells to illustrate the imaging capabilities that this new line makes possible. We also used this line to carry out new studies of cell fate in the tentacles. Specifically, we evaluated the well-accepted notion that all tentacle cells are terminally differentiated and are displaced or migrate exclusively towards the distal end of the tentacle. We found that ectodermal and endodermal epithelial cells are displaced distally, as expected. In contrast, members of the i-cell lineage, which resembled neuronal precursors, could migrate out of a tentacle into the body column. This example illustrates how this tricolored transgenic line enables new in vivo studies of cell behaviors in Hydra.


Asunto(s)
Hydra , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Linaje de la Célula , Ectodermo/fisiología , Células Epiteliales , Hydra/fisiología
12.
Dev Biol ; 487: 74-98, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35461834

RESUMEN

Cnidarians are fascinating creatures at the base of metazoan evolution possessing an almost unlimited regeneration capacity that has attracted the interest of researchers, from Abraham Trembley's discovery of regeneration to the present. They share a simple body plan and a high morphogenetic plasticity that has led to a broad spectrum of life cycles. With molecular genomics it became unequivocally clear that Cnidaria are the sister group of the Bilateria and how similar their molecular toolkit is to that of more complex animals. This has renewed interest in these simple animals, which have had an important role in the establishment of fundamental concepts for developmental biologists from the beginning. This review focuses on our current understanding of signaling centers (organizers) and morphogenetic gradients in cnidarians and how they relate to the emergence of the bilaterian body axes. The data are largely based on the cnidarian models Hydra and Nematostella and are supported by new studies on forms with a complete cnidarian life cycle, such as the medusozoans Aurelia and Clytia. Molecular studies on cnidarian development have revealed the existence of an ancient Wnt signaling center at the site of gastrulation, which was instrumental for the formation of a primary body axis and can be traced back to the common ancestor of bilaterian and non-bilaterian animals. New molecular data also suggest that the molecular vectors for the dorso-ventral and left-right body axis in bilaterians, Bmp and Nodal signaling, respectively, were already present but had different fates in the two clades. The close link of developmental processes in bilaterians and cnidarians but also their distinct differences make cnidarians an indispensable model for tackling fundamental questions in developmental biology from patterning, regeneration and other recent molecular approaches to theoretical concepts.


Asunto(s)
Tipificación del Cuerpo , Anémonas de Mar , Animales , Tipificación del Cuerpo/genética , Biología Evolutiva , Evolución Molecular , Vía de Señalización Wnt/genética
13.
J Physiol ; 601(9): 1583-1595, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36479972

RESUMEN

Ion channels of the degenerin (DEG)/epithelial Na+ channel (ENaC) family serve diverse functions ranging from mechanosensation over Na+ reabsorption to H+ sensing and neurotransmission. However, several diverse DEG/ENaCs interact with neuropeptides; some are directly activated, whereas others are modulated by neuropeptides. Two questions arise: does this interaction have a common structural basis and does it have an ancient origin? Current evidence suggests that RFamide neuropeptides activate the FMRFamide-activated Na+ channels (FaNaCs) of invertebrates via binding to a pocket at the external face of their large extracellular domain. It is likely that RFamides might activate DEG/ENaCs from the freshwater polyp Hydra (the HyNaCs) via binding to a similar pocket, although there is not yet any experimental evidence. In contrast, RFamide neuropeptides modulate acid-sensing ion channels (ASICs) from vertebrates via binding to a central cavity enclosed by ß-sheets of the extracellular domain. Dynorphin opioid peptides, for their part, bind to the acidic pocket of ASICs, which might be evolutionarily related to the peptide binding pocket of FaNaCs, but instead of opening the channels they work as antagonists to stabilize its closed state. Moreover, peptides interacting with DEG/ENaCs from animals of different phyla, although having similar sequences, are evolutionarily unrelated to each other. Collectively, it appears that despite a seemingly similar interaction with similar peptides, the interaction of DEG/ENaCs with neuropeptides has diverse structural bases and many origins.


Asunto(s)
Cnidarios , Neuropéptidos , Animales , Canales de Sodio Degenerina/metabolismo , Cnidarios/metabolismo , Neuropéptidos/metabolismo , Péptidos , Canales Iónicos Sensibles al Ácido/metabolismo , Iones/metabolismo , Mamíferos/metabolismo , Canales Epiteliales de Sodio/metabolismo
14.
J Cell Sci ; 134(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33277380

RESUMEN

Tumour necrosis factor receptors (TNF-Rs) and their ligands, tumour necrosis factors, are highly conserved proteins described in all metazoan phyla. They function as inducers of extrinsic apoptotic signalling and facilitate inflammation, differentiation and cell survival. TNF-Rs use distinct adaptor molecules to activate signalling cascades. Fas-associated protein with death domain (FADD) family adaptors often mediate apoptosis, and TNF-R-associated factor (TRAF) family adaptors mediate cell differentiation and inflammation. Most of these pathway components are conserved in cnidarians, and, here, we investigated the Hydra TNF-R. We report that it is related to the ectodysplasin receptor, which is involved in epithelial cell differentiation in mammals. In Hydra, it is localised in epithelial cells with incorporated nematocytes in tentacles and body column, indicating a similar function. Further experiments suggest that it interacts with the Hydra homologue of a TRAF adaptor, but not with FADD proteins. Hydra FADD proteins colocalised with Hydra caspases in death effector filaments and recruited caspases, suggesting that they are part of an apoptotic signalling pathway. Regulating epithelial cell differentiation via TRAF adaptors therefore seems to be an ancient function of TNF-Rs, whereas FADD-caspase interactions may be part of a separate apoptotic pathway.


Asunto(s)
Hydra , Animales , Apoptosis , Caspasa 8 , Caspasas/metabolismo , Diferenciación Celular , Proteína de Dominio de Muerte Asociada a Fas/genética , Hydra/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346482

RESUMEN

In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.


Asunto(s)
Hydra , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica , Hydra/genética , Hydra/metabolismo , Inhibidores de Agregación Plaquetaria , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
16.
Development ; 147(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31862842

RESUMEN

Hydra possesses three distinct stem cell populations that continuously self-renew and prevent aging in Hydra vulgaris However, sexual animals from the H. oligactis cold-sensitive strain Ho_CS develop an aging phenotype upon gametogenesis induction, initiated by the loss of interstitial stem cells. Animals stop regenerating, lose their active behaviors and die within 3 months. This phenotype is not observed in the cold-resistant strain Ho_CR To dissect the mechanisms of Hydra aging, we compared the self-renewal of epithelial stem cells in these two strains and found it to be irreversibly reduced in aging Ho_CS but sustained in non-aging Ho_CR We also identified a deficient autophagy in Ho_CS epithelial cells, with a constitutive deficiency in autophagosome formation as detected with the mCherry-eGFP-LC3A/B autophagy sensor, an inefficient response to starvation as evidenced by the accumulation of the autophagosome cargo protein p62/SQSTM1, and a poorly inducible autophagy flux upon proteasome inhibition. In the non-aging H. vulgaris animals, the blockade of autophagy by knocking down WIPI2 suffices to induce aging. This study highlights the essential role of a dynamic autophagy flux to maintain epithelial stem cell renewal and prevent aging.


Asunto(s)
Envejecimiento/fisiología , Autofagia , Células Epiteliales/citología , Agua Dulce , Hydra/fisiología , Células Madre/citología , Animales , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Frío , Epidermis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Gametogénesis/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hydra/efectos de los fármacos , Hydra/genética , Imagenología Tridimensional , Fenotipo , Inhibidores de Proteasoma/farmacología , Sirolimus/farmacología , Células Madre/efectos de los fármacos , Análisis de Supervivencia
17.
Phys Biol ; 20(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37696269

RESUMEN

Understanding the collective physical processes that drive robust morphological transitions in animal development necessitates the characterization of the relevant fields involved in morphogenesis. Calcium (Ca2+) is recognized as one such field. In this study, we demonstrate that the spatial fluctuations of Ca2+duringHydraregeneration exhibit universal characteristics. To investigate this phenomenon, we employ two distinct controls, an external electric field andheptanol, a gap junction-blocking drug. Both lead to the modulation of the Ca2+activity and a reversible halting of the regeneration process. The application of an electric field enhances Ca2+activity in theHydra's tissue and increases its spatial correlations, while the administration ofheptanolinhibits its activity and diminishes the spatial correlations. Remarkably, the statistical characteristics of Ca2+spatial fluctuations, including the coefficient of variation and skewness, manifest universal shape distributions across tissue samples and conditions. We introduce a field-theoretic model, describing fluctuations in a tilted double-well potential, which successfully captures these universal properties. Moreover, our analysis reveals that the Ca2+activity is spatially localized, and theHydra's tissue operates near the onset of bistability, where the local Ca2+activity fluctuates between low and high excited states in distinct regions. These findings highlight the prominent role of the Ca2+field inHydramorphogenesis and provide insights into the underlying mechanisms governing robust morphological transitions.


Asunto(s)
Calcio , Animales , Morfogénesis
18.
Anim Cogn ; 26(6): 1799-1816, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37540280

RESUMEN

The small freshwater cnidarian Hydra has been the subject of scientific inquiry for over 300 years due to its remarkable regenerative capacities and apparent immortality. More recently, Hydra has been recognized as an excellent model system within neuroscience because of its small size, transparency, and simple nervous system, which allow high-resolution imaging of its entire nerve net while behaving. In less than a decade, studies of Hydra's nervous system have yielded insights into the activity of neural circuits in vivo unobtainable in most other animals. In addition to these unique attributes, there is yet another lesser-known feature of Hydra that makes it even more intriguing: it does not require its neural hardware to live. The extraordinary ability to survive the removal and replacement of its entire nervous system makes Hydra uniquely suited to address the question of what neurons add to an extant organism. Here, I will review what early work on nerve-free Hydra reveals about the potential role of the nervous system in these animals and point towards future directions for this work.


Asunto(s)
Hydra , Animales , Hydra/fisiología , Sistema Nervioso , Neuronas
19.
Biochemistry (Mosc) ; 88(5): 667-678, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331712

RESUMEN

Glutaredoxin (Grx) is an antioxidant redox protein that uses glutathione (GSH) as an electron donor. Grx plays a crucial role in various cellular processes, such as antioxidant defense, control of cellular redox state, redox control of transcription, reversible S-glutathionylation of specific proteins, apoptosis, cell differentiation, etc. In the current study, we have isolated and characterized dithiol glutaredoxin from Hydra vulgaris Ind-Pune (HvGrx1). Sequence analysis showed that HvGrx1 belongs to the Grx family with the classical Grx motif (CPYC). Phylogenetic analysis and homology modeling revealed that HvGrx1 is closely related to Grx2 from zebrafish. HvGrx1 gene was cloned and expressed in Escherichia coli cells; the purified protein had a molecular weight of 11.82 kDa. HvGrx1 efficiently reduced ß-hydroxyethyl disulfide (HED) with the temperature optimum of 25°C and pH optimum 8.0. HvGrx1 was ubiquitously expressed in all body parts of Hydra. Expression of HvGrx1 mRNA and enzymatic activity of HvGrx1 were significantly upregulated post H2O2 treatment. When expressed in human cells, HvGrx1 protected the cells from oxidative stress and enhanced cell proliferation and migration. Although Hydra is a simple invertebrate, HvGrx1 is evolutionary closer to its homologs from higher vertebrates (similar to many other Hydra proteins).


Asunto(s)
Glutarredoxinas , Hydra , Animales , Humanos , Glutarredoxinas/genética , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hydra/genética , Hydra/metabolismo , Antioxidantes/metabolismo , Filogenia , Peróxido de Hidrógeno , Pez Cebra/metabolismo , India , Proteínas/química , Oxidación-Reducción , Glutatión/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(30): 17854-17863, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32647059

RESUMEN

Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.


Asunto(s)
Relojes Biológicos , Hydra/fisiología , Microbiota , Neuronas/fisiología , Potenciales de Acción , Animales , Evolución Biológica , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA