RESUMEN
The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B. In the absence of IRGQ, free MHC class I heavy chains do not only accumulate in the cell but are also transported to the cell surface, thereby promoting an immune response. Mice and human patients suffering from hepatocellular carcinoma show improved survival rates with reduced IRGQ levels due to increased reactivity of CD8+ T cells toward IRGQ knockout tumor cells. Thus, we reveal IRGQ as a regulator of MHC class I quality control, mediating tumor immune evasion.
RESUMEN
Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.
Asunto(s)
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismoRESUMEN
Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of â¼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse.
Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/patología , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Células Asesinas Naturales/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Células Mieloides/metabolismo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Fenotipo , RNA-Seq , Microambiente TumoralRESUMEN
We employed scRNA sequencing to extensively characterize the cellular landscape of human liver from development to disease. Analysis of â¼212,000 cells representing human fetal, hepatocellular carcinoma (HCC), and mouse liver revealed remarkable fetal-like reprogramming of the tumor microenvironment. Specifically, the HCC ecosystem displayed features reminiscent of fetal development, including re-emergence of fetal-associated endothelial cells (PLVAP/VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages. In a cross-species comparative analysis, we discovered remarkable similarity between mouse embryonic, fetal-liver, and tumor macrophages. Spatial transcriptomics further revealed a shared onco-fetal ecosystem between fetal liver and HCC. Furthermore, gene regulatory analysis, spatial transcriptomics, and in vitro functional assays implicated VEGF and NOTCH signaling in maintaining onco-fetal ecosystem. Taken together, we report a shared immunosuppressive onco-fetal ecosystem in fetal liver and HCC. Our results unravel a previously unexplored onco-fetal reprogramming of the tumor ecosystem, provide novel targets for therapeutic interventions in HCC, and open avenues for identifying similar paradigms in other cancers and disease.
Asunto(s)
Carcinoma Hepatocelular/patología , Células Endoteliales/metabolismo , Microambiente Tumoral/genética , Adulto , Animales , Carcinoma Hepatocelular/genética , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Receptor 2 de Folato/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Hígado/patología , Neoplasias Hepáticas/genética , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The NRF2 transcription factor controls a cell stress program that is implicated in cancer and there is great interest in targeting NRF2 for therapy. We show that NRF2 activity depends on Fructosamine-3-kinase (FN3K)-a kinase that triggers protein de-glycation. In its absence, NRF2 is extensively glycated, unstable, and defective at binding to small MAF proteins and transcriptional activation. Moreover, the development of hepatocellular carcinoma triggered by MYC and Keap1 inactivation depends on FN3K in vivo. N-acetyl cysteine treatment partially rescues the effects of FN3K loss on NRF2 driven tumor phenotypes indicating a key role for NRF2-mediated redox balance. Mass spectrometry reveals that other proteins undergo FN3K-sensitive glycation, including translation factors, heat shock proteins, and histones. How glycation affects their functions remains to be defined. In summary, our study reveals a surprising role for the glycation of cellular proteins and implicates FN3K as targetable modulator of NRF2 activity in cancer.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Carcinoma Hepatocelular/patología , Femenino , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Glicosilación , Células HEK293 , Células Hep G2 , Xenoinjertos , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción GenéticaRESUMEN
Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119+CD45-CD71+ phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor ß (TGF-ß) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications.
Asunto(s)
Progresión de la Enfermedad , Eritroblastos/citología , Proteínas del Tejido Nervioso/sangre , Bazo/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Apoptosis , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células Hep G2 , Humanos , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/citología , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Invasividad Neoplásica/genética , Transducción de SeñalRESUMEN
Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.
Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/patología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Carcinoma Hepatocelular/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Estrés Oxidativo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Transducción de SeñalRESUMEN
Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 single T cells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8+ T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8+ T cells and Tregs and represses the CD8+ T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers.
Asunto(s)
Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T Reguladores/inmunología , Microambiente TumoralRESUMEN
Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole-exome sequencing and DNA copy number analyses, and we analyzed 196 HCC cases by DNA methylation, RNA, miRNA, and proteomic expression also. DNA sequencing and mutation analysis identified significantly mutated genes, including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or downregulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.
Asunto(s)
Carcinoma Hepatocelular/genética , Genómica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virología , Metilación de ADN , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Hepáticas/virología , MicroARNs/genética , MutaciónRESUMEN
Metabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression. Mechanistically, we find that OXCT1 functions as a succinyltransferase, with residue G424 essential for this activity. We also identified serine beta-lactamase-like protein (LACTB) as a main target of OXCT1-mediated succinylation. Extensive succinylation of LACTB K284 inhibits its proteolytic activity, resulting in increased mitochondrial membrane potential and respiration, ultimately leading to hepatocellular carcinoma (HCC) progression. In summary, this study establishes lysine succinyltransferase function of OXCT1 and highlights a link between HCC prognosis and LACTB K284 succinylation, suggesting a potentially valuable biomarker and therapeutic target for further development.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta-Lactamasas , Humanos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Hepatocellular carcinoma (HCC) emerges from chronic inflammation, to which activation of hepatic stellate cells (HSCs) contributes by shaping a pro-tumorigenic microenvironment. Key to this process is p62, whose inactivation leads to enhanced hepatocarcinogenesis. Here, we show that p62 activates the interferon (IFN) cascade by promoting STING ubiquitination by tripartite motif protein 32 (TRIM32) in HSCs. p62, binding neighbor of BRCA1 gene 1 (NBR1) and STING, triggers the IFN cascade by displacing NBR1, which normally prevents the interaction of TRIM32 with STING and its subsequent activation. Furthermore, NBR1 also antagonizes STING by promoting its trafficking to the endosome-lysosomal compartment for degradation independent of autophagy. Of functional relevance, NBR1 deletion completely reverts the tumor-promoting function of p62-deficient HSCs by rescuing the inhibited STING-IFN pathway, thus enhancing anti-tumor responses mediated by CD8+ T cells. Therefore, NBR1 emerges as a synthetic vulnerability of p62 deficiency in HSCs by promoting the STING/IFN pathway, which boosts anti-tumor CD8+ T cell responses to restrain HCC progression.
RESUMEN
Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.
Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Hepatocitos/metabolismo , Inflamación/metabolismo , Neoplasias Hepáticas/metabolismo , Activación de Macrófagos/fisiología , Proteínas Inhibidoras de STAT Activados/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Quimiocinas/metabolismo , Regulación hacia Abajo/fisiología , Femenino , Células HEK293 , Hepatocitos/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Dedos de Zinc/fisiologíaRESUMEN
Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Acetilcoenzima A/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histonas/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.
Asunto(s)
Antígeno B7-H1 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Escape del Tumor , Ubiquitinación , Animales , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Ratones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Proteínas con Dominio MARVEL/metabolismo , Proteínas con Dominio MARVEL/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , RibonucleoproteínasRESUMEN
Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.
Asunto(s)
Proteínas Portadoras/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patología , Quimiocina CCL1/metabolismo , Progresión de la Enfermedad , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Pronóstico , Factor de Transcripción STAT3/metabolismo , Hormonas Tiroideas/genética , Microambiente Tumoral , Proteínas de Unión a Hormona TiroideRESUMEN
Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.
Asunto(s)
Proteínas de Unión al ARN/genética , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma/genética , Empalme Alternativo , Animales , Proteínas de Ciclo Celular/metabolismo , Exones , Perfilación de la Expresión Génica/métodos , Genes Supresores de Tumor , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones SCID , Interferencia de ARN , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Hepatocellular carcinoma (HCC) formation is a multi-step pathological process that involves evolution of a heterogeneous immunosuppressive tumor microenvironment. However, the specific cell populations involved and their origins and contribution to HCC development remain largely unknown. Here, comprehensive single-cell transcriptome sequencing was applied to profile rat models of toxin-induced liver tumorigenesis and HCC patients. Specifically, we identified three populations of hepatic parenchymal cells emerging during HCC progression, termed metabolic hepatocytes (HCMeta ), Epcam+ population with differentiation potential (EP+Diff ) and immunosuppressive malignant transformation subset (MTImmu ). These distinct subpopulations form an oncogenic trajectory depicting a dynamic landscape of hepatocarcinogenesis, with signature genes reflecting the transition from EP+Diff to MTImmu . Importantly, GPNMB+ Gal-3+ MTImmu cells exhibit both malignant and immunosuppressive properties. Moreover, SOX18 is required for the generation and malignant transformation of GPNMB+ Gal-3+ MTImmu cells. Enrichment of the GPNMB+ Gal-3+ MTImmu subset was found to be associated with poor prognosis and a higher rate of recurrence in patients. Collectively, we unraveled the single-cell HCC progression atlas and uncovered GPNMB+ Gal-3+ parenchymal cells as a major subset contributing to the immunosuppressive microenvironment thus malignance in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratas , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatocitos , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Terapia de Inmunosupresión , Microambiente Tumoral , Factores de Transcripción SOXF , Glicoproteínas de Membrana/genéticaRESUMEN
Despite decades of fiercely competitive research and colossal financial investments, the majority of patients with advanced solid cancers cannot be treated with curative intent. To improve this situation, conceptually novel treatment approaches are urgently needed. Cancer is increasingly appreciated as a systemic disease and numerous organismal factors are functionally linked to neoplastic growth, e.g. systemic metabolic dysregulation, chronic inflammation, intestinal dysbiosis and disrupted circadian rhythms. It is tempting to hypothesize that interventions targeting these processes could be of significant account for cancer patients. One important driver of tumor-supporting systemic derangements is inordinate consumption of simple and highly processed carbohydrates. This dietary pattern is causally linked to hyperinsulinemia, insulin resistance, chronic inflammation and intestinal dysbiosis, begging the pertinent question whether the adoption of dietary carbohydrate restriction can be beneficial for patients with cancer. This review summarizes the published data on the role of dietary carbohydrate restriction in the pathogenesis of Hepatocellular Carcinoma (HCC), the most frequent type of primary liver cancer. In addition to outlining the functional interplay between diet, the intestinal microbiome and immunity, the review underscores the importance of bile acids as interconnectors between the intestinal microbiota and immune cells.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carbohidratos de la Dieta , Disbiosis , InflamaciónRESUMEN
Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.
Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Quimioterapia Combinada , Línea Celular TumoralRESUMEN
The dysfunction of the ubiquitin-proteasome system (UPS) facilitates the malignant progression of hepatocellular carcinoma (HCC). While targeting the UPS for HCC therapy has been proposed, identifying effective targets has been challenging. In this study, we conducted a focused screen of siRNA libraries targeting UPS-related WD40 repeat (WDR) proteins and found that silencing WDR20, a deubiquitinating enzyme activating factor, selectively inhibited the proliferation of HCC cells without affecting normal hepatocytes. Moreover, the downregulation of WDR20 expression induced HCC cellular senescence and suppressed tumor progression in xenograft, sleeping beauty transposon/transposase, and hydrodynamic tail vein injection-induced HCC models, and Alb-Cre+/MYC+ HCC transgenic mouse models. Mechanistically, we found that WDR20 silencing disturbed the protein stability of c-Myc, orchestrating the simultaneous USP12/46-mediated deubiquitination of c-Myc, thereby promoting the transcriptional activation of CDKN1A. Further investigation revealed a positive coexpression of WDR20 and c-Myc in a tissue microarray with 88 HCC clinical samples. By employing three patient-derived organoids from individuals with HCC, we have validated the decrease in c-Myc expression and the significant induction of senescence and growth inhibition following silencing of WDR20. This study not only uncovers the biological function of WDR20 and elucidates the molecular mechanism underlying its negative regulation of HCC cellular senescence but also highlight the potential of WDR20 as a promising target for HCC therapy.