Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.179
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 792, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169292

RESUMEN

BACKGROUND: With the progress of industrialization and urbanization, cadmium (Cd) pollution in farmland is increasingly severe, greatly affecting human health. Sunflowers possess high resistance to Cd stress and great potential for phytoremediation of Cd-contaminated soil. Previous studies have shown that humic acid (HA) effectively mitigates plant damage induced by Cd; however, its alleviating effects on sunflower plants under Cd stress remain largely unknown. RESULTS: We employed four different concentrations of HA (50, 100, 200, and 300 mg L-1) via foliar application to examine their ability to alleviate Cd stress on sunflower plants' growth, chlorophyll synthesis, and biochemical defense system. The results revealed that Cd stress not only reduced plant height, stem diameter, fresh and dry weight, and chlorophyll content in sunflower plants but also altered their chlorophyll fluorescence characteristics compared to the control group. After Cd stress, the photosynthetic structure was damaged and the number of PSII reactive centers per unit changed. Application of 200 mg L-1 HA promotes sunflower growth and increases chlorophyll content. HA significantly enhances antioxidant enzyme activities (SOD, POD, CAT, and APX) and reduces ROS content (O2 -, H2O2 and -OH). Totally, Application of 200 mg L-1 HA had the best effect than other concentrations to alleviate the Cd-induced stress in sunflower plants. CONCLUSIONS: The foliar application of certain HA concentration exhibited the most effective alleviation of Cd-induced stress on sunflower plants. It can enhance the light energy utilization and antioxidant enzyme activities, while reduce ROS contents in sunflower plants. These findings provide a theoretical basis for using HA to mitigate Cd stress in sunflowers.


Asunto(s)
Cadmio , Clorofila , Helianthus , Sustancias Húmicas , Clorofila/metabolismo , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Helianthus/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico , Biodegradación Ambiental , Contaminantes del Suelo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486134

RESUMEN

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Asunto(s)
Benzopiranos , Hordeum , Suelo , Suelo/química , Sustancias Húmicas/análisis , Fertilizantes/análisis , Fósforo
3.
Plant Cell Environ ; 47(3): 871-884, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164043

RESUMEN

Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.


Asunto(s)
Glycine max , Rhizobium , Nodulación de la Raíz de la Planta , Sustancias Húmicas , Fijación del Nitrógeno , Etilenos/metabolismo , Inmunidad de la Planta , Simbiosis , Nódulos de las Raíces de las Plantas/microbiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39217268

RESUMEN

Tylosin tartrate, a macrolide antibiotic, is one of a class of emerging contaminants that have been detected in natural bodies of water since they are not easily removed by conventional treatment processes. In this study, the direct and indirect photodegradation of tylosin tartrate was analyzed to understand the role of reactive oxygen species and organic matter that may be present in surface waters. While direct photolysis caused negligible degradation (k = (9.4 ± 1.8) × 10-5 s-1), the addition of 0.4 M hydrogen peroxide (k = (2.18 ± 0.01) × 10-4 s-1) or usage of the photo-Fenton process (k = (2.96 ± 0.02) × 10-4 s-1) resulted in greater degradation. The degradation was maximized by combining tylosin tartrate with an experimentally determined optimal concentration of humic acid (15 mg/L), which readily produced singlet oxygen and increased the overall degradation (k = 1.31 ± 0.05) × 10-3 s-1) by means of indirect photolysis. Absolute pseudo-first-order bimolecular reaction rate constants for tylosin tartrate were measured with singlet oxygen [(4.7936 ± 0.0001) × 105 M-1 s-1] and hydroxyl radical [(5.2693 ± 0.0002) × 109 M-1 s-1] using competition kinetics, and when combined with data on concentration of the reactive oxygen species, showed that the hydroxyl radical makes a contribution to the degradation that is approximately eleven orders of magnitude greater than singlet oxygen.

5.
Environ Sci Technol ; 58(8): 4019-4028, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38366980

RESUMEN

Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Óxidos/química , Compuestos de Manganeso/química , Sustancias Húmicas/análisis , Diclofenaco/química , Electrones , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 58(22): 9896-9907, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669322

RESUMEN

Efficient use of humic acid (HA) for eco-friendly farming and environmental remediation requires further understanding of how targeted modification of HA affects the chemical structure of HA and thereby its effectiveness in enhancing soil quality. We developed novel selective modifiers (SMs) for extracting HA by codoping sodium and copper elements into the birnessite lattice. The structure of SMs was thoroughly examined, and the HAs extracted using SMs, referred to as SMHs, were subjected to a detailed evaluation of their functional groups, molecular weight, carbon composition, flocculation limits, and effectiveness in saline soil remediation. The results showed that replacing manganese with sodium and copper in SMs alters the valence state and reactive oxygen species. In contrast, SMHs exhibited increased acidic functional groups, a lower molecular weight, and transformed aliphatic carbon. Furthermore, the saline soil was improved through increased salt leaching and an optimized soil aggregate structure by SMHs. This research highlights the importance of targeted modification of HA and demonstrates the potential of these modifiers in improving soil quality for eco-friendly farming and environmental remediation.


Asunto(s)
Sustancias Húmicas , Suelo , Suelo/química , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo
7.
Environ Sci Technol ; 58(3): 1531-1540, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38118063

RESUMEN

Investigating soil organic matter's (SOM) microscale assembly and functionality is challenging due to its complexity. This study constructs comparatively realistic SOM models, including diverse components such as Leonardite humic acid (LHA), lipids, peptides, carbohydrates, and lignin, to unveil their spontaneous self-assembly behavior at the mesoscopic scale through microsecond coarse-grained molecular dynamics simulations. We discovered an ordered SOM aggregation creating a layered phase from its hydrophobic core to the aqueous phase, resulting in an increasing O/C ratio and declining structural amphiphilicity. Notably, the amphiphilic lipids formed a bilayer membrane, partnering with lignin to constitute SOM's hydrophobic core. LHA, despite forming a layer, was embedded within this structure. The formation of such complex architectures was driven by nonbonded interactions between components. Our analysis revealed component-dependent diffusion effects within the SOM system. Lipids, peptides, and lignin showed inhibitory effects on self-diffusion, while carbohydrates facilitated diffusion. This study offers novel insights into the dynamic behavior and assembly of SOM components, introducing an effective approach for studying dynamic SOM mechanisms in aquatic environments.


Asunto(s)
Simulación de Dinámica Molecular , Suelo , Suelo/química , Agua/química , Lignina , Sustancias Húmicas , Péptidos/química , Lípidos , Carbohidratos
8.
Environ Sci Technol ; 58(5): 2303-2312, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38263620

RESUMEN

Dissimilatory arsenate reduction contributes a large proportion of arsenic flux from flooded paddy soil, which is closely linked to soil organic carbon input and efflux. Humic acid (HA) represents a natural ingredient in soil and is shown to enhance microbial arsenate respiration to promote arsenic mobility. However, the community and function profiles of metabolically active arsenate-respiring bacteria and their interactions with HA in paddy soil remain unclear. To probe this linkage, we performed a genome-centric comparison of potentially active arsenate-respiring bacteria in anaerobic microcosms amended with 13C-lactate and HA by combining stable-isotope probing with genome-resolved metagenomics. Indeed, HA greatly accelerated the microbial reduction of arsenate to arsenite. Enrichment of bacteria that harbor arsenate-respiring reductase genes (arrA) in HA-enriched 13C-DNA was confirmed by metagenomic binning, which are affiliated with Firmicutes (mainly Desulfitobacterium, Bacillus, Brevibacillus, and Clostridia) and Acidobacteria. Characterization of reference extracellular electron transfer (EET)-related genes in these arrA-harboring bacteria supports the presence of EET-like genes, with partial electron-transport chain genes identified. This suggests that Gram-positive Firmicutes- and Acidobacteria-related members may harbor unspecified EET-associated genes involved in metal reduction. Our findings highlight the link between soil HA and potentially active arsenate-respiring bacteria, which can be considered when using HA for arsenic removal.


Asunto(s)
Arseniatos , Arsénico , Sustancias Húmicas , Suelo , Carbono , Bacterias/genética , Microbiología del Suelo
9.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696240

RESUMEN

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Asunto(s)
Sustancias Húmicas , Manganeso , Oxidación-Reducción , Fenoles , Manganeso/química , Fenoles/química , Aniones , Compuestos de Manganeso/química , Óxidos/química , Contaminantes Químicos del Agua/química
10.
Environ Sci Technol ; 58(17): 7543-7553, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632926

RESUMEN

Coumarin was detected as one of the most abundant compounds by nontargeted analysis of natural product components in actual water samples prior to disinfection. More importantly, prechlorination of humic acid generated 3-hydroxycoumarin and monohydroxy-monomethyl-substituted coumarin with a total yield of ≤10.1%, which suggested the humic substance in raw water is an important source of coumarins. 7-Hydroxycoumarin, 6-hydroxy-4-methylcoumarin, 6,7-dihydroxycoumarin, and 7-methoxy-4-methylcoumarin were identified in raw water by high-performance liquid chromatography-tandem high-resolution mass spectrometry because only some coumarin standards were commercially available. Their chlorination generated monochlorinated and polychlorinated coumarins, and their structures were confirmed by the synthesized standards. These products could form at various dosages of chlorine and pH levels, and some with a concentration of 600 ng/L can be stable in tap water for days. 3,6,8-Trichloro-7-hydroxycoumarin, 3-chloro-7-methoxy-4-methylcoumarin, and 3,6-dichloro-7-methoxy-4-methylcoumarin were first identified in finished water with concentrations of 0.0670, 78.1, and 14.7 ng/L, respectively, but not in source water, suggesting that they are new DBPs formed during disinfection. The cytotoxicity of 3-chloro-7-methoxy-4-methylcoumarin in CHO-K1 cells was comparable to those of 2,6-dibromo-1,4-benzoquinone and 2,6-dichloro-1,4-benzoquinone in TIC-Tox analyses, suggesting that further investigation of their occurrence and control in drinking water systems is warranted.


Asunto(s)
Cumarinas , Cricetulus , Agua Potable , Halogenación , Contaminantes Químicos del Agua , Cumarinas/química , Agua Potable/química , Animales , Células CHO , Cricetinae , Cromatografía Líquida de Alta Presión , Purificación del Agua
11.
Environ Sci Technol ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247403

RESUMEN

The mobility and distribution of heavy metal ions (HMs) in aquatic environments are significantly influenced by humic acid (HA), which is ubiquitous. A quantitative understanding of the interaction mechanism underlying the adsorption and retention of HMs by HA is of vital significance but remains elusive. Herein, the interaction mechanism between HA and different types of HMs (i.e., Cd(II), Pb(II), arsenate, and chromate) was quantitatively investigated at the nanoscale. Based on quartz crystal microbalance with dissipation tests, the adsorption capacities of Pb(II), Cd(II), As(V), and Cr(VI) ionic species on the HA surface were measured as ∼0.40, ∼0.25, ∼0.12, and ∼0.02 nmol cm-2, respectively. Atomic force microscopy force results showed that the presence of Pb(II)/Cd(II) cations suppressed the electrostatic double-layer repulsion during the approach of two HA surfaces and the adhesion energy during separation was considerably enhanced from ∼2.18 to ∼5.05/∼4.18 mJ m-2. Such strong adhesion stems from the synergistic metal-HA complexation and cation-π interaction, as evidenced by spectroscopic analysis and theoretical simulation. In contrast, As(V)/Cr(VI) oxo-anions could form only weak hydrogen bonds with HA, resulting in similar adhesion energies for HA-HA (∼2.18 mJ m-2) and HA-As(V)/Cr(VI)-HA systems (∼2.26/∼1.96 mJ m-2). This work provides nanoscale insights into quantitative HM-HA interactions, improving the understanding of HMs biogeochemical cycling.

12.
Environ Res ; 252(Pt 2): 118940, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626871

RESUMEN

Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.


Asunto(s)
Cromo , Gases de Efecto Invernadero , Níquel , Humedales , Níquel/análisis , Gases de Efecto Invernadero/análisis , Cromo/análisis , Carbón Orgánico/química , Carbono/análisis , Sustancias Húmicas/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
13.
Environ Res ; 255: 119134, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751002

RESUMEN

The deep removal of organic pollutants is challenging for coagulation technology in drinking water and wastewater treatment plants to satisfy the rising water standards. Iron (III) chloride (FeCl3) is a popular inorganic coagulant; although it has good performance in removing the turbidity (TB) in water at an alkaline medium, it cannot remove dissolved pollutants and natural organic matter such as humic acid water solution. Additionally, its hygroscopic nature complicates determining the optimal dosage for effective coagulation. Biochar (BC), a popular adsorbent with abundant functional groups, porous structure, and relatively high surface area, can adsorb adsorbates from water matrices. Therefore, combining BC with FeCl3 presents a potential solution to address the challenges associated with iron chloride. Consequently, this study focused on preparing and characterizing a novel biochar/ferric chloride-based coagulant (BC-FeCl3) for efficient removal of turbidity (TB) and natural organic matter, specifically humic acid (HA), from synthetic wastewater. The potential solution for the disposal of produced sludge was achieved by its recovering and recycling, then used in adsorption of HA from aqueous solution. The novel coagulant presented high TB and HA removal within 10 min of settling period at pH solution of 7.5. Furthermore, the recovered sludge presented a good performance in the adsorption of HA from aqueous solution. Adsorption isotherm and kinetics studies revealed that the Pseudo-second-order model best described kinetic adsorption, while the Freundlich model dominated the adsorption isotherm.


Asunto(s)
Carbón Orgánico , Cloruros , Compuestos Férricos , Sustancias Húmicas , Aguas Residuales , Sustancias Húmicas/análisis , Carbón Orgánico/química , Adsorción , Cloruros/química , Compuestos Férricos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
14.
Appl Microbiol Biotechnol ; 108(1): 177, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277012

RESUMEN

In this study, the effects of inoculum ratio, substrate particle size and aeration rate on humic acid (HA) biosynthesis during aerobic composting of rice straw were investigated, respectively. The contents of total organic carbon, total nitrogen and HA, as well as lignocellulose degradation in the composting were evaluated, respectively. It is found that the maximal HA yield of 356.9 g kg-1 was obtained at an inoculum ratio of 20%, a substrate particle size of 0.83 mm and an aeration rate of 0.3 L·kg-1 DM min-1 in the process of composting. The changes of microbial communities and metabolic functions at different stages of the composting were also analyzed through high-throughput sequencing. The result demonstrates that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the dominant phyla and their relative abundance significantly varied over time (p < 0.05), and Rhizobium, Phenylobacterium, Pseudoxanthomonas and Paenibacillus were positively related to HA content in the compost. Furthermore, the metabolic function profiles of bacterial community indicate that these functional genes in carbohydrate metabolism and amino acid metabolism were involved in lignocellulose biodegradation and HA biosynthesis. This work may be conducive to explore new regulation strategy to improve bioconversion efficiency of agricultural residues to applicable biofertilizers. KEY POINTS: • Temperature, pH, TOC, TN and C/N caused a great influence on humic acids synthesis • The succession of the microbial community during the composting were evaluated • The metabolisms of carbohydrate and amino acids were involved in HA synthesis.


Asunto(s)
Compostaje , Oryza , Sustancias Húmicas , Oryza/microbiología , Estiércol/microbiología , Bacterias/genética , Suelo
15.
Ecotoxicol Environ Saf ; 275: 116228, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518611

RESUMEN

Activated carbon air cathode combined with iron anode oxidation-flocculation synergistic Arsenic (As) removal was a new groundwater purification technology with low energy consumption and high efficiency for groundwater with high As concentration. The presence of organic matter such as humic acid (HA) had ambiguous effects on formation of organic colloids in the system. The effects of the particle size distribution characteristics of these colloids on the formation characteristics of flocs and the efficiency of As purification was not clear. In this work, we used five different pore size alumina filter membranes to separate mixed phase solutions and studied the corresponding changes in iron and arsenic concentrations in the presence and absence of humic acid conditions. In the presence of HA, the arsenic concentration of < 0.05 µm particle size components was 1.01, 1.28, 3.07, 7.69, 2.85 and 1.24 times of that in the absence of HA. At the same time, the arsenic content in 0.05-0.1 µm and 0.1-0.45 µm particle size components was also higher than that in the system without HA, which revealed that the presence of HA hindered the flocculation behavior of As distribution to higher particle sizes in the early stage of the reaction. The presence of HA affected the flocculation rate of iron flocs from small to large particle size fractions and it had limited effect on the behavior of large-size flocs in adsorption of As. These results provide a theoretical basis for targeted, rapid, and low consumption synergistic removal of arsenic and organic compounds in high arsenic groundwater.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Hierro , Sustancias Húmicas/análisis , Floculación , Contaminantes Químicos del Agua/análisis , Electrodos , Coloides , Purificación del Agua/métodos
16.
Int J Phytoremediation ; 26(4): 481-492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37626022

RESUMEN

This study was carried out to evaluate the effects of humic acid (HA) on the nutrient removal efficiencies of aquatic duckweed plant (Lemna minor) from a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish for 30 days. The HA was added to water at three concentrations of 0 (Control), 1.5, and 3 mg/L in triplicate. Water quality parameters, growth performance, and some hemato-biochemical parameters of the fish in variable HA concentrations were compared. The total ammonia nitrogen (TAN) and total phosphorous (TP) removal efficiency of L. minor increased with increasing the HA concentration from 0 mg/L to 3 mg/L (p < 0.05). The concentration of nitrate (NO3-) in the HA-3 mg/L was higher than that in the other groups on days 20 and 30 of the fish cultivation period (p < 0.05). The growth performance of fish improved in the HA-3 mg/L compared to the other groups. The addition of different concentrations of HA to water had no adverse effect on the hematological properties of the Nile tilapia. The plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in the HA-0 mg/L and HA-1.5 mg/L groups were higher than in the HA-3 mg/L (p < 0.05). No significant differences in the plasma glucose and cholesterol levels were observed between the HA-groups (p > 0.05), while the triglyceride level increased in the HA-3 mg/L compared to the control (p < 0.05). These results indicated that adding HA to water could be an effective method to enhance the bioremediation performance of the aquatic duckweed plants as biofilter and thus improve water quality, subsequently, fish growth performance in RASs.


The current study applied aquatic duckweed plant (Lemna minor) as a new biofilter in a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish. The effects of three concentrations of humic acid (HA) as water additive on the nutrient removal efficiency of L. minor from water were investigated. HA improved bioremediation performance of the aquatic duckweed plant.


Asunto(s)
Araceae , Cíclidos , Animales , Sustancias Húmicas , Biodegradación Ambiental
17.
J Environ Manage ; 358: 120772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608569

RESUMEN

Increasing soil organic carbon (SOC) content is crucial for soil fertility, conservation, and combating climate-related issues by sequestering CO2. While existing studies explore the total content of SOC, few of them investigate the factors that favor its sequestration and the impact of land use type and management. This research aims to study the spatial variation of the total content and the quality or maturity (in terms of aromaticity) of the humic acid (HA) fraction, along with the factors that enhance its formation and conservation for a longer time in the soil. In addition, the study tries to evaluate the performance of the Regression Kriging (RK) method in producing interpolation maps that describe the natural variation of the SOC and its quality with the aim of defining and preventing soil degradation. Finally, the study aims to evaluate the impact of the land use type and the importance of dense vegetation in the sequestration of the organic carbon (OC) in the soil. The analysis of the SOC was performed in northeast Algeria's semi-arid climate, examining content, quality, and chemical composition. Using geostatistical methods (RK), SOC is correlated with most related factors, producing detailed interpolation maps. The results showed that the SOC and its HA fraction (both its total content and its degree of transformation or maturity (measured in terms of aromaticity and structural condensation) are highly correlated to the topography of the area (P < 0.05). Results reveal variations in HAs' composition across land covers. Notably, areas subjected to burning exhibited a 21% increase in HA aromaticity compared to forested regions and a 29% increase relative to cultivated areas. The study highlights that soil cover has a substantial influence on the performance of SOC sequestration, the forested areas have a positive impact on the storage of SOC in the form of HA with a more complex chemical composition that suggests increased aromaticity and resilience. As a whole, the results indicate the potential of geostatistical methods to provide valuable information about the factors that influence the current status and evolution of SOC in the study area.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Argelia , Secuestro de Carbono , Sustancias Húmicas/análisis
18.
J Environ Manage ; 368: 122190, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180818

RESUMEN

2H-phase molybdenum disulfide (2H-MoS2) has been considered to be a chemically stable two-dimensional (2D) nanomaterial. Nonetheless, the persistence of 2H-MoS2 in the presence of environmental redox-active matrices, such as naturally occurring oxidants (e.g., manganese dioxide (MnO2)) and natural organic matter (NOM), remains largely unknown. Herein, we examined the interplay between 2H-MoS2, MnO2 (a common natural oxidant), and NOM species (i.e., Aldrich humic acid (ALHA) and Suwannee River natural organic matter (SRNOM)). The results show that MnO2 accelerates the oxidative dissolution of 2H-MoS2, regardless of the presence of dissolved oxygen. The effect of NOM on the MnO2-induced fate of 2H-MoS2 was found to depend on its affinity for 2H-MoS2 and the functionality of NOM. ALHA preferentially adsorbed on hydrophobic 2H-MoS2 nanosheets due to the enrichment of reductive polycyclic aromatics and polyphenolic constituents. The preferential ALHA adsorption counteracted the MnO2-triggered oxidative transformation of 2H-MoS2, as revealed by the cathodic response of 2H-MoS2 (i.e., decreased the open circuit potential by 0.0338 V) and the emergence of reductive Mo‒C bonds at 228.8 and 231.9 eV upon the addition of ALHA. This work evaluated the persistence of 2H-MoS2, illustrating its susceptibility to decomposition by naturally occurring oxidants and the influence of NOM on it. These findings are crucial for revealing the fate and transport of MoS2 in aquatic environments and provide guidelines for related applications in natural or engineered systems for MoS2 and potentially other 2D materials.


Asunto(s)
Disulfuros , Sustancias Húmicas , Molibdeno , Oxidantes , Molibdeno/química , Disulfuros/química , Oxidantes/química , Óxidos/química , Nanoestructuras/química , Oxidación-Reducción , Compuestos de Manganeso/química , Adsorción
19.
J Environ Manage ; 354: 120344, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382432

RESUMEN

Coexisting tetracycline (TC), dissolved organic matter (DOM), and metal cations in aqueous environments might form complexes and consequently affect the environmental fate of TC. In this study, the interactions among coexisting humic acid (HA), TC, and Mg(II) in solutions were investigated by equilibrium dialysis batch experiments and nuclear magnetic resonance hydrogen spectroscopy (1H NMR) characterization. In the binary systems, the dimethylamine (4Me2NH+) functional group on the A-ring of TC bound to the oxygen-containing functional groups of HA via hydrogen bond. The solution pH affected the agglomeration morphology and dissociation of the oxygen-containing functional groups of HA as well as protonation and spatial conformation of TC, which in turn affected the HA-TC interactions. The complexation sites and ratio of Mg(II) on TC affect the binding mode in the ternary system. When the TC-Mg(II) complexation ratio is 1:1, the B, C, and D rings of TC preferentially complex with Mg(II), resulting in the change of TC from an extended to a twisted conformation. At this time, Mg(II) had a weaker inhibitory effect on binding affinity between HA and TC. When the complexation ratio was 1:2, the second Mg(II) complexation deactivated the 4Me2NH + on the A ring and further stabilized TC twisted conformation, resulting in a stronger inhibitory effect on the binding of TC to HA. Under acidic conditions, the solution pH mainly caused the difficulty in forming TC-Mg(II) complexes. The inhibitory effect of Mg(II) on the binding between HA and TC is weaker than that under alkaline conditions.


Asunto(s)
Sustancias Húmicas , Magnesio , Sustancias Húmicas/análisis , Tetraciclina/química , Antibacterianos/química , Oxígeno , Concentración de Iones de Hidrógeno , Adsorción
20.
J Environ Manage ; 353: 120186, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38278109

RESUMEN

The effects of inorganic fertilizer addition method on the organic-inorganic co-composting process, especially the structure of humic acid and the mechanism of microbial nutrient restriction, are unclear. In this article, the effects of one-time and fractional addition of inorganic fertilizer on the structure of humic acid, extracellular enzyme activity, extracellular enzyme stoichiometry and the culturable growth-promoting bacteria during organic-inorganic co-composting were determined. The results showed that the addition of inorganic fertilizer promoted the humification degree of compost. Compared nitrogen with phosphorus, the fermentation microorganism behaved as N-restricted throughout the process. Compared one-time addition with fractional addition of inorganic treatments, the TOC, WSOC, NO3--N and humic acid content in the mature compost of the one-time addition treatment were higher. The contents of nitrogen, oxygen, the carboxyl functional groups, aromatic compounds, and the nitrogen/carbon atomic ratio in the humic acid structure increased as the composting process proceeded, while the contents of hydrogen, aliphatic substances, and the hydrogen/carbon atomic ratio decreased, and the elemental composition and structural changes of humic acids indicated that the humification degree of the one-time addition treatment was higher. The addition of inorganic fertilizer increased the relative abundances of Bacillus megaterium and Bacillus subtilis in the mature compost.


Asunto(s)
Compostaje , Sustancias Húmicas , Sustancias Húmicas/análisis , Suelo , Fertilizantes/análisis , Carbono , Hidrógeno , Nitrógeno/análisis , Estiércol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA