Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cytokine ; 180: 156673, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857562

RESUMEN

Host proteins released by the activated endothelial cells during SARS-CoV-2 infection are implicated to be involved in coagulation and endothelial dysfunction. However, the underlying mechanism that governs the vascular dysfunction and disease severity in COVID-19 remains obscure. The study evaluated the serum levels of Bradykinin, Kallikrein, SERPIN A, and IL-18 in COVID-19 (N-42 with 20 moderate and 22 severe) patients compared to healthy controls (HC: N-10) using ELISA at the day of admission (DOA) and day 7 post-admission. The efficacy of the protein levels in predicting disease severity was further determined using machine learning models. The levels of bradykinins and SERPIN A were higher (P ≤ 0.001) in both severe and moderate cases on day 7 post-admission compared to DOA. All the soluble proteins studied were found to elevated (P ≤ 0.01) in severe compared to moderate in day 7 and were positively correlated (P ≤ 0.001) with D-dimer, a marker for coagulation. ROC analysis identified that SERPIN A, IL-18, and bradykinin could predict the clinical condition of COVID-19 with AUC values of 1, 0.979, and 1, respectively. Among the models trained using univariate model analysis, SERPIN A emerged as a strong prognostic biomarker for COVID-19 disease severity. The serum levels of SERPIN A in conjunction with the coagulation marker D-dimer, serve as a predictive indicator for COVID-19 clinical outcomes. However, studies are required to ascertain the role of these markers in disease virulence.


Asunto(s)
Biomarcadores , Bradiquinina , COVID-19 , Interleucina-18 , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/diagnóstico , Biomarcadores/sangre , Femenino , Masculino , Persona de Mediana Edad , Pronóstico , Interleucina-18/sangre , Bradiquinina/sangre , Adulto , Anciano , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Índice de Severidad de la Enfermedad , Endotelio Vascular/metabolismo , Calicreínas/sangre , alfa 1-Antitripsina/sangre
2.
Inflamm Res ; 73(9): 1565-1579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39017739

RESUMEN

OBJECTIVE AND DESIGN: Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis. MATERIAL OR SUBJECTS: Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure. METHODS: Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice. RESULTS: B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT. CONCLUSION: B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Dioxoles , Ratones Noqueados , Receptor de Bradiquinina B1 , Termogénesis , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Frío , Dioxoles/farmacología , Metabolismo Energético/efectos de los fármacos , Ratones Endogámicos C57BL , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B1/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Termogénesis/efectos de los fármacos , Tiazoles/farmacología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Cell Mol Neurobiol ; 41(1): 63-78, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32222846

RESUMEN

Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.


Asunto(s)
Dolor Crónico/etiología , Dolor Crónico/metabolismo , Isquemia/complicaciones , Receptores de Bradiquinina/metabolismo , Animales , Antagonistas de los Receptores de Bradiquinina/farmacología , Inhibidores de la Colinesterasa/farmacología , Dolor Crónico/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Hiperalgesia/complicaciones , Masculino , Ratones , Nocicepción/efectos de los fármacos , Receptores de Bradiquinina/genética , Médula Espinal/patología
4.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299400

RESUMEN

The goal of this study was to assess the pharmacological effects of black tea (Camellia sinensis var. assamica) water extract on human kinin-forming enzymes in vitro. Tea is a highly consumed beverage in the world. Factor XII (FXII, Hageman factor)-independent- and -dependent activation of prekallikrein to kallikrein leads to the liberation of bradykinin (BK) from high-molecular-weight kininogen (HK). The excessive BK production causes vascular endothelial and nonvascular smooth muscle cell permeability, leading to angioedema. The prevalence of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema appears to be through BK. Both histamine and BK are potent inflammatory mediators. However, the treatments for histamine-mediated angioedema are unsuitable for BK-mediated angioedema. We hypothesized that long-term consumption of tea would reduce bradykinin-dependent processes within the systemic and pulmonary vasculature, independent of the anti-inflammatory actions of polyphenols. A purified fraction of the black tea water extract inhibited both kallikrein and activated FXII. The black tea water extracts inhibited factor XII-induced cell migration and inhibited the production of kallikrein on the endothelial cell line. We compared the inhibitory effects of the black tea water extract and twenty-three well-known anti-inflammatory medicinal herbs, in inhibiting both kallikrein and FXII. Surprisingly, arjunglucoside II specifically inhibited the activated factor XII (FXIIa), but not the kallikrein and the activated factor XI. Taken together, the black tea water extract exerts its anti-inflammatory effects, in part, by inhibiting kallikrein and activated FXII, which are part of the plasma kallikrein-kinin system (KKS), and by decreasing BK production. The inhibition of kallikrein and activated FXII represents a unique polyphenol-independent anti-inflammatory mechanism of action for the black tea.


Asunto(s)
Bradiquinina/metabolismo , Camellia/química , Endotelio Vascular/efectos de los fármacos , Factor XII/antagonistas & inhibidores , Sistema Calicreína-Quinina/efectos de los fármacos , Extractos Vegetales/farmacología , Arteria Pulmonar/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Humanos , Arteria Pulmonar/metabolismo
5.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260245

RESUMEN

Microorganisms that create mixed-species biofilms in the human oral cavity include, among others, the opportunistic fungus Candida albicans and the key bacterial pathogen in periodontitis, Porphyromonas gingivalis. Both species use arsenals of virulence factors to invade the host organism and evade its immune system including peptidylarginine deiminase that citrullinates microbial and host proteins, altering their function. We assessed the effects of this modification on the interactions between the C. albicans cell surface and human plasminogen and kininogen, key components of plasma proteolytic cascades related to the maintenance of hemostasis and innate immunity. Mass spectrometry was used to identify protein citrullination, and microplate tests to quantify the binding of modified plasminogen and kininogen to C. albicans cells. Competitive radioreceptor assays tested the affinity of citrullinated kinins to their specific cellular receptors. The citrullination of surface-exposed fungal proteins reduced the level of unmodified plasminogen binding but did not affect unmodified kininogen binding. However, the modification of human proteins did not disrupt their adsorption to the unmodified fungal cells. In contrast, the citrullination of kinins exerted a significant impact on their interactions with cellular receptors reducing their affinity and thus affecting the role of kinin peptides in the development of inflammation.


Asunto(s)
Candida albicans/fisiología , Proteínas Fúngicas/metabolismo , Quininógenos/metabolismo , Plasminógeno/metabolismo , Porphyromonas gingivalis/enzimología , Desiminasas de la Arginina Proteica/farmacología , Proteínas Bacterianas/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Cromatografía Liquida , Citrulinación , Humanos , Inmunidad Innata , Quininógenos/química , Unión Proteica , Espectrometría de Masas en Tándem
6.
J Cell Physiol ; 234(3): 2851-2865, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30132865

RESUMEN

High nuclear expression of G protein-coupled receptors, including kinin B1 receptors (B1R), has been observed in several human cancers, but the clinical significance of this is unknown. We put forward the hypothesis that these "nuclearized" kinin B1R contribute to tumorigenicity and can be a new target in anticancer strategies. Our initial immunostaining and ultrastructural electron microscopy analyses demonstrated high B1R expression predominantly located at internal/nuclear compartments in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line as well as in clinical samples of patients with TNBC. On the basis of these findings, in the present study, we evaluated the anticancer therapeutic potential of newly identified, cell-permeable B1R antagonists in MDA-MB-231 cells (ligand-receptor binding/activity assays and LC-MS/MS analyses). We found that these compounds (SSR240612, NG67, and N2000) were more toxic to MDA-MB-231 cells in comparison with low- or non-B1R expressing MCF-10A normal human mammary epithelial cells and COS-1 cells, respectively (clonogenic, MTT proliferative/cytocidal assays, and fluorescence-activated cell-sorting (FACS)-based apoptosis analyses). By comparison, the peptide B1R antagonist R954 unable to cross cell membrane failed to produce anticancer effects. Furthermore, the putative mechanisms underlying the anticancer activities of cell-penetrant B1R antagonists were assessed by analyzing cell cycle regulation and signaling molecules related to cell survival and apoptosis (FACS and western blot). Finally, drug combination experiments showed that cell-penetrant B1R antagonists can cooperate with suboptimal doses of chemotherapeutic agents (doxorubicin and paclitaxel) to promote TNBC death. This study provides evidence on the potential value of internally acting kinin B1R antagonists in averting growth of breast cancer.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Receptor de Bradiquinina B1/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Células COS , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Chlorocebus aethiops , Doxorrubicina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
7.
J Neurochem ; 150(3): 296-311, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206169

RESUMEN

Temporal lobe epilepsy (TLE) is a chronic disease, characterized by severe and refractory seizures, triggered in the hippocampus and/or amygdala, disrupting the blood-brain barrier. This disruption can sustain, or aggravate, the epileptic condition. The aim of this study was to evaluate the activation of the kallikrein-kinin system in patients with TLE, as it relates to the maintenance of blood-brain barrier. Human hippocampal sclerotic tissues removed after surgery for seizure control, plasma, and serum were used in the following assays: immunostaining for white blood cells in the TLE hippocampus, C-reactive protein in serum, quantification of plasma kallikrein (PKal) and cathepsin B (CatB) activity in serum and plasma, quantification of C1-inhibitor, analysis of high-molecular-weight kininogen (H-kininogen) fragments, and activation of plasma prekallikrein for comparison with healthy controls. Infiltration of white blood cells in the sclerotic hippocampus and a significant increase in the neutrophil/lymphocyte ratio in the blood of TLE patients were observed. High levels of C-reactive protein (TLE = 1.4 ± 0.3 µg/mL), PKal (TLE = 5.4 ± 0.4 U/mL), and CatB (TLE = 4.9 ± 0.4 U/mL) were also evident in the serum of TLE patients comparing to controls. A strong linear correlation was observed between active CatB and PKal in the serum of TLE patients (r = 0.88). High levels of cleaved H-kininogen and free PKal, and low levels of C1-inhibitor (TLE = 188 ± 12 µg/mL) were observed in the serum of TLE patients. Our data demonstrated that the plasma kallikrein-kinin system is activated in patients with TLE. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Catepsina B/sangre , Epilepsia del Lóbulo Temporal/metabolismo , Inflamación/metabolismo , Sistema Calicreína-Quinina/fisiología , Calicreínas/sangre , Adulto , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad
8.
J Exp Biol ; 222(Pt 10)2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31043456

RESUMEN

The small size of Malpighian tubules in the fruit fly Drosophila melanogaster has discouraged measurements of the transepithelial electrical resistance. The present study introduces two methods for measuring the transepithelial resistance in isolated D. melanogaster Malpighian tubules using conventional microelectrodes and PClamp hardware and software. The first method uses three microelectrodes to measure the specific transepithelial resistance normalized to tubule length or luminal surface area for comparison with resistances of other epithelia. The second method uses only two microelectrodes to measure the relative resistance for comparing before and after effects in a single Malpighian tubule. Knowledge of the specific transepithelial resistance allows the first electrical model of electrolyte secretion by the main segment of the anterior Malpighian tubule of D. melanogaster The electrical model is remarkably similar to that of the distal Malpighian tubule of Aedes aegypti when tubules of Drosophila and Aedes are studied in vitro under the same experimental conditions. Thus, despite 189 millions of years of evolution separating these two genera, the electrophysiological properties of their Malpighian tubules remains remarkably conserved.


Asunto(s)
Drosophila melanogaster/fisiología , Impedancia Eléctrica , Túbulos de Malpighi/fisiología , Animales , Microelectrodos
9.
Inflamm Res ; 68(10): 845-855, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31218444

RESUMEN

INTRODUCTION: Carboxypeptidase M (CPM) is a glycosylphosphatidylinositol anchored enzyme that plays an important role in the kallikrein-kinin system (KKS). CPM catalytic domain hydrolyzes Arg from C-terminal peptides (i.e., bradykinin and kallidin), generating des-Arg-kinins, the agonists of B1 receptor (B1R). It is known that CPM and kinin B1R are co-localized in the plasma membrane microdomains, where they interact with each other, facilitating receptor signaling. AIMS: We hypothesized here that this CPM-B1R interaction could also affect the activity of the enzyme. METHODS: Thus, in this work, we evaluated the impact of B1R presence or absence on CPM activity and expression, using primary culture of microvascular endothelial cells from wild-type, kinin B1R knockout mice (B 1 -/- ), and transgenic rats overexpressing B1 receptor exclusively in the endothelium. In addition, HEK293T cells, as wells as B 1 -/- primary culture of endothelial cells, both transfected with B1R, were also used. RESULTS: CPM expression and activity were downregulated in cells of knockout mice compared to control and this reduction was rescued after B1R transfection. Cells overexpressing B1R presented higher levels of CPM mRNA, protein, and activity. This profile was reverted by pre-incubation with the B1R antagonist, R715, in highly expressing receptor cells. CONCLUSIONS: Our data show that kinin B1R positively modulates both CPM expression and activity, suggesting that CPM-B1R interaction in membrane microdomains might affect enzyme activity, beyond interfering in receptors signaling. This work highlights the interactions among different components of KKS and contributes to a better understanding of its patho-physiological role.


Asunto(s)
Células Endoteliales/metabolismo , Metaloendopeptidasas/metabolismo , Receptor de Bradiquinina B1/metabolismo , Animales , Células Cultivadas , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Pulmón/citología , Metaloendopeptidasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Sprague-Dawley , Ratas Transgénicas , Receptor de Bradiquinina B1/genética
10.
Mol Cell Biochem ; 428(1-2): 101-108, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28161805

RESUMEN

Cisplatin is a drug widely used in chemotherapy that frequently causes severe renal dysfunction. Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells. Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury. To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin. Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1. Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1. Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue. Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.


Asunto(s)
Lesión Renal Aguda/prevención & control , Antagonistas del Receptor de Bradiquinina B1/farmacología , Cisplatino/farmacocinética , Proteínas de Transporte de Catión Orgánico/genética , Receptor de Bradiquinina B1/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Cisplatino/administración & dosificación , Cisplatino/efectos adversos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Proteínas de Transporte de Catión Orgánico/metabolismo , Receptor de Bradiquinina B1/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 36(5): 898-907, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26966276

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. Activity of the local kallikrein-kinin system may be important in cardiovascular disease. The effect of kinin B2 receptor (B2R) agonist and antagonist peptides on experimental AAA was investigated. APPROACH AND RESULTS: AAA was induced in apolipoprotein E-deficient mice via infusion of angiotensin II (1.0 µg/kg per minute SC). B2R agonists or antagonists were given via injection (2 mg/kg IP) every other day. The B2R agonist (B9772) promoted aortic rupture in response to angiotensin II associated with an increase in neutrophil infiltration of the aorta in comparison to controls. Mice receiving a B2R/kinin B1 receptor antagonist (B9430) were relatively protected from aortic rupture. Neutrophil depletion abrogated the ability of the B2R agonist to promote aortic rupture. Progression of angiotensin II-induced aortic dilatation was inhibited in mice receiving a B2R antagonist (B9330). Secretion of metalloproteinase-2 and -9, osteoprotegerin, and osteopontin by human AAA explant was reduced in the presence of the B2R antagonist (B9330). B2R agonist and antagonist peptides enhanced and inhibited, respectively, angiotensin II-induced neutrophil activation and aortic smooth muscle cell inflammatory phenotype. The B2R antagonist (B9330; 5 µg) delivered directly to the aortic wall 1 week post-AAA induction with calcium phosphate in a rat model reduced aneurysm growth associated with downregulation of aortic metalloproteinase-9. CONCLUSIONS: B2R signaling promotes aortic rupture within a mouse model associated with the ability to stimulate inflammatory phenotypes of neutrophils and vascular smooth muscle cells. B2R antagonism could be a potential therapy for AAA.


Asunto(s)
Angiotensina II , Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Rotura de la Aorta/metabolismo , Apolipoproteínas E/deficiencia , Receptor de Bradiquinina B2/metabolismo , Animales , Aorta Abdominal/efectos de los fármacos , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/prevención & control , Rotura de la Aorta/genética , Rotura de la Aorta/patología , Rotura de la Aorta/prevención & control , Apolipoproteínas E/genética , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas del Receptor de Bradiquinina B2/farmacología , Fosfatos de Calcio , Dilatación Patológica , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Noqueados , Activación Neutrófila/efectos de los fármacos , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Fenotipo , Ratas Sprague-Dawley , Receptor de Bradiquinina B2/agonistas , Transducción de Señal , Factores de Tiempo , Técnicas de Cultivo de Tejidos
12.
Can J Physiol Pharmacol ; 95(10): 1117-1124, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28384411

RESUMEN

The renin-angiotensin system (RAS) generates, maintains, and makes worse hypertension and cardiovascular diseases (CVDs) through its biologically active component angiotensin II (Ang II), that causes vasoconstriction, sodium retention, and structural alterations of the heart and the arteries. A few endogenous vasodilators, kinins, natriuretic peptides, and possibly angiotensin (1-7), exert opposite actions and may provide useful therapeutic agents. As endothelial autacoids, the kinins are potent vasodilators, active natriuretics, and protectors of the endothelium. Indeed, the kallikrein-kinin system (KKS) is considered the dominant mechanism for counteracting the detrimental effects of the hyperactive RAS. The 2 systems, RAS and KKS, are controlled by the angiotensin-converting enzyme (ACE) that generates Ang II and inactivates the kinins. Inhibitors of ACE can reduce the impact of Ang II and potentiate the kinins, thus contributing to restore the cardiovascular homeostasis. In the last 20 years, ACE-inhibitors (ACE-Is) have become the drugs of first choice for the treatments of the major CVDs. ACE-Is not only reduce blood pressure, as sartans also do, but by protecting and potentiating the kinins, they can reduce morbidity and mortality and improve the quality of life for patients with CVDs. This paper provides a brief review of the literature on this topic.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Calicreína-Quinina , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/fisiopatología , Humanos , Sistema Calicreína-Quinina/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal
13.
Inflammopharmacology ; 25(4): 459-469, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28160128

RESUMEN

Kinins are bioactive peptides which provide multiple functions, including critical regulation of the inflammatory response. Released during tissue injury, kinins potentiate the inflammation which represents a hallmark of numerous neurological disorders, including those of autoimmune origin such as multiple sclerosis (MS). In the present work, we assess the expression of B1 receptor (B1R) in rat brain during the course of experimental autoimmune encephalomyelitis (EAE) which is an animal model of MS. We apply pharmacological inhibition to investigate the role of this receptor in the development of neurological deficits and in shaping the cytokine/chemokine profile during the course of the disease. Overexpression of B1R is observed in brain tissue of rats subjected to EAE, beginning at the very early asymptomatic phase of the disease. This overexpression is suppressed by a specific antagonist known as DALBK. The involvement of B1R in the progression of neurological symptoms in immunized rats is confirmed. Analysis of an array of cytokines/chemokines identified a sub-group as being B1R-dependent. Increase of the protein levels for the proinflammatory cytokines (Il-6, TNF-α but not IL-1ß), chemokines attracting immune cells into nervous tissue (MCP-1, MIP-3α, LIX), and protein levels of fractalkine and vascular endothelial growth factor observed in EAE rats, were significantly diminished after DALBK administration. This may indicate the protective potential of pharmacological inhibition of B1R. However, simultaneously reduced protein levels of anti-inflammatory and neuroprotective factors (IL-10, IL-4, and CNTF) was noticed. The results show that B1R-mediated signaling regulates the cellular response profile following neuroinflammation in EAE.


Asunto(s)
Antagonistas del Receptor de Bradiquinina B1/farmacología , Encéfalo/metabolismo , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Encefalomielitis Autoinmune Experimental/metabolismo , Receptor de Bradiquinina B1/biosíntesis , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Bradiquinina/uso terapéutico , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Encéfalo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Ratas , Ratas Endogámicas Lew
14.
Eur J Inflamm ; 13(1): 40-52, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26413099

RESUMEN

Diabetes mellitus and septic shock increase the incidence of mortality by thrombosis. Although kinin B1 receptor (B1R) is involved in both pathologies, its role in platelet function and thrombosis remains unknown. This study investigates the expression, the inflammatory, and pro-thrombotic effects of B1R in a model of septic shock in diabetic rats. Sprague-Dawley rats were made diabetic with streptozotocin (STZ) (65 mg/kg, i.p.). Four days later, control and STZ-diabetic rats were injected with lipopolysaccharide (LPS) (2 mg/kg, i.p.) or the vehicle. B1R antagonist (SSR240612, 10 mg/kg by gavage) was given either acutely (12 and 24 h prior to endpoint analysis) or daily for up to 7 days. Moreover, a 7-day treatment was given either with cyclooxygenase (COX)-2 inhibitor (niflumic acid, 5 mg/kg, i.p.), non-selective COX-1 and COX-2 inhibitor (indomethacin, 10 mg/kg, i.p.), non-selective nitric oxide synthase (NOS) inhibitor (L-NAME, 50 mg/kg by gavage), iNOS inhibitor (1400W, 5 mg/kg, i.p.), or heparin (100 IU/kg, s.c.). The following endpoints were measured: edema and vascular permeability (Evans blue dye), B1R expression (qRT-PCR, western blot, flow cytometry), aggregation in platelet-rich plasma (optical aggregometry), and organ damage (histology). Rats treated with STZ, LPS, and STZ plus LPS showed significant increases in edema and vascular permeability (heart, kidney, lung, and liver) and increased expression of B1R in heart and kidney (mRNA) and platelets (protein). Lethal septic shock induced by LPS was enhanced in STZ-diabetic rats and was associated with lung and kidney damage, including platelet micro-aggregate formation. SSR240612 prevented all these abnormalities as well as STZ-induced hyperglycemia and LPS-induced hyperthermia. Similarly to SSR240612, blockade of iNOS and COX-2 improved survival. Data provide the first evidence that kinin B1R plays a primary role in lethal thrombosis in a rat model of septic shock in diabetes. Pharmacological rescue was made possible with B1R antagonism or by inhibition of iNOS and COX-2, which may act as downstream mechanisms.

15.
J Cell Biochem ; 115(11): 1985-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24924235

RESUMEN

Adhesion of leukocytes to vascular endothelium in response to proinflammatory mediators is an important component of the overall inflammatory reaction. In the current work, we used a retinoic acid-differentiated human promonocytic cell line, U937 and a human microvascular endothelial cell line, HMEC-1 to analyze the effect of the potent pro-inflammatory bradykinin-related peptides (kinins) on cell adhesion. Bradykinin (BK) and kinin metabolites without the C-terminal arginine residue enhanced adhesion of the monocyte-like cells to fibronectin and to the HMEC-1 cells. Expression of adhesion proteins on the surface of both cell types was altered by the kinin peptides. In the monocyte-like cells, expression of CD11b, a subunit of Mac-1 integrin, was significantly increased whilst in the endothelial cells, a strong increase in the production of intercellular adhesion molecule 1 (ICAM-1) was observed. The positive bradykinin-induced effect on the cell-cell interaction was reversed by a carboxypeptidase inhibitor (MGTA), hence we suspected a significant role of the des-Arg kinin metabolites, which acted through the kinin receptor type 1. Indeed, the expression of this receptor was up-regulated not only by agonists but also by interferon-γ and bradykinin. Kinin peptides also regulated signal transducer and activator of transcription proteins (STATs) activated by cytokines. Taken together, the above observations support our hypothesis that kinins stimulate monocyte adhesion to the vessel wall, especially during pathological states of the circulatory system accompanied by proinflammatory cytokine release.


Asunto(s)
Bradiquinina/farmacología , Células Endoteliales/fisiología , Monocitos/fisiología , Factores de Transcripción STAT/metabolismo , Ácido 3-Mercaptopropiónico/análogos & derivados , Ácido 3-Mercaptopropiónico/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Fibronectinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factores de Transcripción STAT/genética , Detección de Señal Psicológica/efectos de los fármacos
16.
ACS Nano ; 18(1): 539-550, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38134312

RESUMEN

There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg9 bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.


Asunto(s)
Bradiquinina , Nanoporos , Péptidos/química , Biomarcadores , Aprendizaje Automático
17.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339331

RESUMEN

Cisplatin is a platinum-based chemotherapy drug widely used to treat various solid tumours. Although it is effective in anti-cancer therapy, many patients develop peripheral neuropathy during and after cisplatin treatment. Peripheral neuropathy results from lesions or diseases in the peripheral somatosensory nervous system and is a significant cause of debilitation and suffering in patients. In recent years, preclinical studies have been conducted to elucidate the mechanisms involved in chemotherapy-induced peripheral neuropathic pain, as well as to promote new therapeutic targets since current treatments are ineffective and are associated with adverse effects. G-protein coupled receptors and ion channels play a significant role in pain processing and may represent promising targets for improving the management of cisplatin-induced neuropathic pain. This review describes the role of G protein-coupled receptors and ion channels in cisplatin-induced pain, analysing preclinical experimental studies that investigated the role of each receptor subtype in the modulation of cisplatin-induced pain.

18.
Drug Discov Today ; 28(9): 103697, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422168

RESUMEN

Current treatments modalities for major depressive disorder (MDD) mainly target the monoaminergic neurotransmission. However, the therapeutic inadequacy and adverse effects confine the use of these conventional antidepressants to a limited subset of MDD patients. The classical antidepressants are increasingly proving unsatisfactory in tackling the treatment-resistant depression (TRD). Hence, the focus of treatment is shifting to alternative pathogenic pathways involved in depression. Preclinical and clinical evidences accumulated across the last decades have unequivocally affirmed the causative role of immuno-inflammatory pathways in the progression of depression. There is an upsurge in the clinical evaluations of the drugs having anti-inflammatory effects as antidepressants. This review highlights the molecular mechanisms connecting the inflammatory pathways to the MDD and current clinical status of inflammation modulating drugs in the treatment of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Inflamación/tratamiento farmacológico
19.
Brain Sci ; 13(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37371419

RESUMEN

Postoperative pain causes discomfort and disability, besides high medical costs. The search for better treatments for this pain is essential to improve recovery and reduce morbidity and risk of chronic postoperative pain. Kinins and their receptors contribute to different painful conditions and are among the main painful inflammatory mediators. We investigated the kinin's role in a postoperative pain model in mice and reviewed data associating kinins with this painful condition. The postoperative pain model was induced by an incision in the mice's paw's skin and fascia with the underlying muscle's elevation. Kinin levels were evaluated by enzyme immunoassays in sham or operated animals. Kinin's role in surgical procedure-associated mechanical allodynia was investigated using systemic or local administration of antagonists of the kinin B1 receptor (DALBk or SSR240612) or B2 receptor (Icatibant or FR173657) and a kallikrein inhibitor (aprotinin). Kinin levels increased in mice's serum and plantar tissue after the surgical procedure. All kinin B1 or B2 receptor antagonists and aprotinin reduced incision-induced mechanical allodynia. Although controversial, kinins contribute mainly to the initial phase of postoperative pain. The kallikrein-kinin system can be targeted to relieve this pain, but more investigations are necessary, especially associations with other pharmacologic targets.

20.
Biomedicines ; 11(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37626691

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a multifactorial, world public health problem that often develops as a consequence of acute kidney injury (AKI) and inflammation. Strategies are constantly sought to avoid and mitigate the irreversibility of this disease. One of these strategies is to decrease the inflammation features of AKI and, consequently, the transition to CKD. METHODS: C57Bl6J mice were anesthetized, and surgery was performed to induce unilateral ischemia/reperfusion as a model of AKI to CKD transition. For acute studies, the animals received the Kinin B1 receptor (B1R) antagonist before the surgery, and for the chronic model, the animals received one additional dose after the surgery. In addition, B1R genetically deficient mice were also challenged with ischemia/reperfusion. RESULTS: The absence and antagonism of B1R improved the kidney function following AKI and prevented CKD transition, as evidenced by the preserved renal function and prevention of fibrosis. The protective effect of B1R antagonism or deficiency was associated with increased levels of macrophage type 2 markers in the kidney. CONCLUSIONS: The B1R is pivotal to the evolution of AKI to CKD, and its antagonism shows potential as a therapeutic tool in the prevention of CKD following AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA