Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.200
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Lipid Res ; 65(10): 100638, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218219

RESUMEN

Fatty acid desaturase (FADS1) variant-rs174550 strongly regulates polyunsaturated fatty acid (PUFA) biosynthesis. Additionally, the FADS1 is related to mitochondrial function. Thus, we investigated whether changes in mitochondrial function are associated with the genetic variation in FADS1 (rs174550) in human adipocytes isolated from individuals consuming diets enriched with either dietary alpha-linolenic (ALA) or linoleic acid (LA). Two cohorts of men homozygous for the genotype of FADS1 (rs174550) were studied: FADSDIET2 dietary intervention study with ALA- and LA-enriched diets and Kuopio Obesity Surgery study (KOBS), respectively. We could demonstrate that differentiated human adipose-derived stromal cells from subjects with the TT genotype had higher mitochondrial metabolism compared with subjects with the CC genotype of FADS1-rs174550 in the FADSDIET2. Responses to PUFA-enriched diets differed between the genotypes of FADS1-rs174550, showing that ALA, but not LA, -enriched diet stimulated mitochondrial metabolism more in subjects with the CC genotype when compared with subjects with the TT genotype. ALA, but not LA, proportion in plasma phospholipid fraction correlated positively with adipose tissue mitochondrial-DNA amount in subjects with the CC genotype of FADS1-rs174550 in the KOBS. These findings demonstrate that the FADS1-rs174550 is associated with modification in mitochondrial function in human adipocytes. Additionally, subjects with the CC genotype, when compared with the TT genotype, benefit more from the ALA-enriched diet, leading to enhanced energy metabolism in human adipocytes. Altogether, the FADS1-rs174550 could be a genetic marker to identify subjects who are most suitable to receive dietary PUFA supplementation, establishing also a personalized therapeutic strategy to improve mitochondrial function in metabolic diseases.

2.
Biochem Biophys Res Commun ; 702: 149618, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340658

RESUMEN

Patatin-like phospholipase domain-containing 1 (PNPLA1) is crucial in the esterification of linoleic acid (LA; 18:2n-6) to ω-hydroxy fatty acids (FA) of ceramide 1 (Cer1), the major barrier lipid of the differentiated epidermis. We previously reported that γ-linolenic acid (GLA; 18:3n-6) as well as LA is esterified to Cer1 subspecies with sphingosine (d18:1) or eicosasphingosine (d20:1) amide-linked to two different ω-hydroxy FA (30wh:0; 32wh:1). Here, we further investigated whether PNPLA1 is also responsible for esterification of GLA to these Cer1 subspecies in normal human keratinocytes (NHK). As late/terminal differentiation was induced in NHK, PNPLA1 and differentiation markers were expressed, and LA-esterified Cer1 subspecies (18:2n-6/C30wh:0 or C32wh:0/d18:1; 18:2n-6/C32wh:0/d20:1) were detected, which were further increased with LA treatment. GLA-esterified Cer1 subspecies (18:3n-6/C30wh:0 or C32wh:0/d18:1; 18:3n-6/C32wh:0/d20:1) were detected only with GLA treatment. Specific small interfering RNA-mediated knockdown of PNPLA1 (KDP) in differentiated NHK decreased levels of these LA-esterified Cer1 subspecies overall and of involucrin (IVL), a terminal differentiation marker. Moreover, KDP resulted in lesser LA/GLA responses as characterized by more significant decreases in IVL and LA/GLA-esterified Cer1 subspecies overall and an accumulation of non-esterified ω-hydroxy ceramides, their putative precursors; the decrease of 18:3n-6/C32wh:0/d18:1, the predominant GLA-esterified Cer1 subspecies, specifically paralleled the increase of C32wh:0/d18:1, its corresponding precursor. PNPLA1 is responsible for NHK terminal differentiation and also for esterification of GLA to the ω-hydroxy FA of Cer1.


Asunto(s)
Queratinocitos , Ácido gammalinolénico , Humanos , Ácido gammalinolénico/metabolismo , Esterificación , Epidermis/metabolismo , Ceramidas/metabolismo , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Aciltransferasas/metabolismo , Fosfolipasas/metabolismo
3.
Microb Pathog ; 196: 106982, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332543

RESUMEN

Salmonella is a major foodborne pathogen that can be transmitted from livestock and poultry to humans through the food chain. Due to the widespread use of antibiotics, antibiotic resistance Salmonella has become an important factor threatening food safety. Combining antibiotic and non-antibiotic agents is a promising approach to address the widespread emergence of antibiotic-resistant pathogens. In this study, we investigated the antibiotic resistance profile and molecular characterization of different serotypes of Salmonella isolated from large-scale egg farms using drug susceptibility testing and whole genome sequencing. The synergistic effect of alpha-linolenic acid (ALA) with antibiotics was evaluated using the checkerboard test and time-kill curve. The molecular mechanism of α-linolenic acid synergism was explored using biochemical assays, pull-down assays, and molecular docking. In vivo efficacy of ALA in combination with florfenicol (FFC) or tetracycline (TET) against multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar typhimurium was also investigated using a mouse model. We found that ALA reduced the minimum inhibitory concentration (MIC) of tetracycline and florfenicol in all strains tested. When ALA (512 mg/L) was combined with florfenicol (32 mg/L) or tetracycline (16 mg/L), we observed disruption of cell membrane integrity, increased outer membrane permeability, lowered cell membrane potential, and inhibition of proton-drive-dependent efflux pumps. The synergistic treatment also inhibited biofilm production and promoted oxidative damage. These changes together led to an increase in bacterial antibiotic susceptibility. The improved efficacy of ALA combination treatment with antibiotics was validated in the mouse model. Molecular docking results indicate that ALA can bind to membrane proteins via hydrogen bonding. Our findings demonstrated that combined treatment using ALA and antibiotics is effective in preventing infections involving MDR bacteria. Our results are of great significance for the scientific and effective prevention and control of antibiotic resistance Salmonella, as well as ensuring food safety.

4.
J Nutr ; 154(2): 395-402, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38081585

RESUMEN

BACKGROUND: Oxylipins are products derived from polyunsaturated fatty acids (PUFAs) that play a role in cardiovascular disease and aging. Fish oil-derived n-3 PUFAs promote the formation of anti-inflammatory and vasodilatory oxylipins; however, there are little data on oxylipins derived from α-linolenic acid (C18:3n-3), the primary plant-derived n-3 PUFA. Walnuts are a source of C18:3n-3. OBJECTIVES: To investigate the effect on serum oxylipins of a diet enriched with walnuts at 15% energy (30-60 g/d; 2.6-5.2 g C18:3n-3/d) for 2 y compared to a control diet (abstention from walnuts) in healthy older males and females (63-79 y). METHODS: The red blood cell proportion of α-linolenic acid was determined by gas chromatography as a measure of compliance. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure serum concentrations of 53 oxylipins in participants randomly assigned to receive the walnut diet (n = 64) or the control diet (n = 51). Two-year concentration changes (final minus baseline) were log-transformed (base log-10) and standardized (mean-centered and divided by the standard deviation of each variable). Volcano plots were then generated (fold change ≥1.5; false discovery rate ≤0.1). For each oxylipin delta surviving multiple testing, we further assessed between-intervention group differences by analysis of covariance adjusting for age, sex, BMI, and the baseline concentration of the oxylipin. RESULTS: The 2-y change in red blood cell C18:3n-3 in the walnut group was significantly higher than that in the control group (P < 0.001). Compared to the control diet, the walnut diet resulted in statistically significantly greater increases in 3 C18:3n-3-derived oxylipins (9-HOTrE, 13-HOTrE, and 12,13-EpODE) and in the C20:5n-3 derived 14,15-diHETE, and greater reductions of the C20:4n-6-derived 5-HETE, 19-HETE, and 5,6-diHETrE. CONCLUSIONS: Long-term walnut consumption changes the serum oxylipin profile in healthy older persons. Our results add novel mechanistic evidence on the cardioprotective effects of walnuts. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT01634841.


Asunto(s)
Ácidos Grasos Omega-3 , Juglans , Masculino , Femenino , Humanos , Anciano , Anciano de 80 o más Años , Oxilipinas , Ácido alfa-Linolénico , Dieta , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/farmacología
5.
J Nutr ; 154(9): 2827-2833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019166

RESUMEN

BACKGROUND: Omega-3 fatty acids derived from seafood acids may influence cardiac arrhythmogenesis, whereas the role of the major plant-derived omega-3 fatty acid, alpha-linolenic acid (ALA), on atrial fibrillation (AF) is largely unknown. OBJECTIVES: We aimed to investigate the association between ALA intake and risk of incident AF overall and in subjects with a low intake of marine omega-3 fatty acids. METHODS: We followed a total of 54,260 middle-aged men and women enrolled into the Danish Diet, Cancer, and Health cohort for development of AF using nationwide registries. Intake of ALA was assessed using a validated food frequency questionnaire and modeled as a restricted cubic spline. Statistical analyses were conducted using Cox proportional hazards regression. RESULTS: We identified a total of 4902 incident AF events during a median of 16.9 y of follow-up. In multivariable analyses, we observed indications of a statistically nonsignificant inverse association between ALA intake and risk of AF up to an ALA intake of 2.5 g/d, whereas no appreciable association was found for higher intakes of ALA. A statistically significant dose-dependent negative association was found between ALA intake and risk of AF in individuals consuming < 250 mg marine omega-3 fatty acids daily, whereas no association was found in those with a higher intake of marine omega-3 fatty acids. CONCLUSIONS: Intake of ALA was associated with a lower risk of AF in individuals consuming a low intake of marine omega-3 fatty acids. This finding is novel and warrants further investigation.


Asunto(s)
Fibrilación Atrial , Ácidos Grasos Omega-3 , Ácido alfa-Linolénico , Humanos , Masculino , Femenino , Fibrilación Atrial/prevención & control , Fibrilación Atrial/epidemiología , Persona de Mediana Edad , Ácido alfa-Linolénico/administración & dosificación , Dinamarca/epidemiología , Ácidos Grasos Omega-3/administración & dosificación , Factores de Riesgo , Modelos de Riesgos Proporcionales , Alimentos Marinos , Dieta , Estudios Prospectivos , Estudios de Seguimiento , Encuestas y Cuestionarios , Estudios de Cohortes , Incidencia
6.
Biotechnol Bioeng ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285630

RESUMEN

In eukaryotes, gene expression typically requires individual promoter and terminator for each gene, making the expression of multiple genes tedious and sometimes too difficult to handle. This is especially true for underdeveloped nonmodel organisms with few genetic engineering tools and genetic elements such as Rhodosporidium toruloides. In contrast, polycistronic expression offers advantages such as smaller size and ease of cloning. Here we report the development of a multigene expression system using 2A peptides in R. toruloides. First, twenty-two 2A peptides were evaluated for their cleavage efficiencies, which ranged from 33.65% to 93.32%. Subsequently, the 2A peptide of ERBV-1 with the highest efficiency was selected to enable simultaneous expression of four proteins. In addition, we demonstrated the optimization of the α-linolenic acid biosynthetic pathway using ERBV-1 peptide mediated polycistronic expression, which increased the α-linolenic acid production by 104.72%. These results suggest that using ERBV-1 peptide is an efficient strategy for multigene expression in R. toruloides.

7.
Br J Nutr ; 131(11): 1844-1851, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38443203

RESUMEN

The primary goal of the investigation was to analyse the anti-inflammatory and antioxidant properties of Gamma-linolenic acid (GLA) on rats with indomethacin (IND)-induced gastric ulcers. Thirty rats were divided into five groups: Control, IND (50 mg/kg, p.o.), IND pretreated with GLA 100 mg/kg (p.o. for 14 d), IND pretreated with GLA 150 mg/kg (p.o. for 14 d) and IND pretreated with omeprazole (20 mg/kg, p.o. for 14 d). The stomach tissues were examined to calculate the ulcer index and pH and analyse biochemical markers (prostaglandin E2 (PGE2), cyclooxygenase 1 (COX1), TNF-1, IL-6 and intercellular adhesion molecule-1 (ICAM1)) and oxidative stress parameters (malondialdehyde: (MDA), superoxide dismutase (SOD), glutathione (GSH) and CAT (catalase)) as well as undergo histopathological assessment. GLA 100 and 150 mg/kg showed a protective effect against IND-induced gastric damage. It reduced levels of COX1, TNF-1, IL-6 and ICAM and increased PGE2 levels. GLA also normalised antioxidant function by modulating MDA, SOD, GSH and CAT. GLA intervention protects against IND-induced gastric ulcers by restoring oxidant/antioxidant balance and reducing inflammation.


Asunto(s)
Antioxidantes , Dinoprostona , Indometacina , Estrés Oxidativo , Ratas Wistar , Úlcera Gástrica , Ácido gammalinolénico , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control , Úlcera Gástrica/tratamiento farmacológico , Indometacina/efectos adversos , Antioxidantes/farmacología , Ratas , Estrés Oxidativo/efectos de los fármacos , Ácido gammalinolénico/farmacología , Masculino , Dinoprostona/metabolismo , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/patología , Mucosa Gástrica/metabolismo , Interleucina-6/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Superóxido Dismutasa/metabolismo , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Glutatión/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología , Ciclooxigenasa 1/metabolismo , Malondialdehído/metabolismo , Omeprazol/farmacología
8.
Br J Nutr ; 132(1): 1-12, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38772904

RESUMEN

Epilepsy ranks fourth among neurological diseases, featuring spontaneous seizures and behavioural and cognitive impairments. Although anti-epileptic drugs are currently available clinically, 30 % of epilepsy patients are still ineffective in treatment and 52 % of patients experience serious adverse reactions. In this work, the neuroprotective effect of α-linolenic acid (ALA, a nutrient) in mice and its potential molecular mechanisms exposed to pentylenetetrazol (PTZ) was assessed. The mice were injected with pentetrazol 37 mg/kg, and ALA was intra-gastrically administered for 40 d. The treatment with ALA significantly reduced the overall frequency of epileptic seizures and improved the behaviour impairment and cognitive disorder caused by pentetrazol toxicity. In addition, ALA can not only reduce the apoptosis rate of brain neurons in epileptic mice but also significantly reduce the content of brain inflammatory factors (IL-6, IL-1 and TNF-α). Furthermore, we predicted that the possible targets of ALA in the treatment of epilepsy were JAK2 and STAT3 through molecular docking. Finally, through molecular docking and western blot studies, we revealed that the potential mechanism of ALA ameliorates PTZ-induced neuron apoptosis and neurological impairment in mice with seizures by down-regulating the JAK2/STAT3 pathway. This study aimed to investigate the anti-epileptic and neuroprotective effects of ALA, as well as explore its potential mechanisms, through the construction of a chronic ignition mouse model via intraperitoneal PTZ injection. The findings of this research provide crucial scientific support for subsequent clinical application studies in this field.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Janus Quinasa 2 , Neuronas , Pentilenotetrazol , Factor de Transcripción STAT3 , Convulsiones , Ácido alfa-Linolénico , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Apoptosis/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Masculino , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Simulación del Acoplamiento Molecular , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
9.
J Pharmacol Sci ; 155(4): 148-151, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880549

RESUMEN

We examined the inhibitory effects of α-linolenic acid (ALA) on the contractions of pig coronary arteries. ALA concentration-dependently inhibited the contractions elicited by U46619 and prostaglandin F2α without affecting those elicited by 80 mM KCl, histamine, acetylcholine, and serotonin. ALA rightward shifted the concentration-response curve of U46619, and Schild plot analysis revealed that ALA competitively antagonized U46619. Furthermore, ALA inhibited the increase in intracellular Ca2+ concentration caused by TP receptor stimulation but not that caused by FP receptor stimulation. These results suggest that ALA behaves as a selective antagonist of TP receptors in coronary arteries.


Asunto(s)
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Calcio , Vasos Coronarios , Receptores de Tromboxanos , Ácido alfa-Linolénico , Animales , Vasos Coronarios/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Porcinos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Calcio/metabolismo , Receptores de Tromboxanos/antagonistas & inhibidores , Receptores de Tromboxanos/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Dinoprost/farmacología , Contracción Muscular/efectos de los fármacos
10.
Mol Breed ; 44(2): 9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298744

RESUMEN

With the increasing public attention to the health benefit of polyunsaturated fatty acids (PUFAs) and demand for linolenic acid (C18:3), it is of great significance to increase the C18:3 content in our meal. As an oil crop with high content of C18:3, Camelina sativa has three homologous copies of FAD2 and three homologous copies FAD3. In this study, we seed-specifically overexpressed two Camelina sativa fatty acid desaturase genes, CsFAD2 and CsFAD3, in rapeseed cultivar Zhongshuang 9. The results show that C18:3 content in CsFAD2 and CsFAD3 overexpressed seeds is increased from 8.62% in wild-type (WT) to 10.62-12.95% and 14.54-26.16%, respectively. We crossed CsFAD2 and CsFAD3 overexpression lines, and stable homozygous digenic crossed lines were obtained. The C18:3 content was increased from 8.62% in WT to 28.46-53.57% in crossed overexpression lines. In addition, we found that the overexpression of CsFAD2 and CsFAD3 had no effect on rapeseed growth, development, and other agronomic traits. In conclusion, we successfully generated rapeseed germplasms with high C18:3 content by simultaneously overexpressing CsFAD2 and CsFAD3, which provides a feasible way for breeding high C18:3 rapeseed cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01445-0.

11.
J Asthma ; 61(10): 1306-1315, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38634666

RESUMEN

OBJECTIVE: The prevalence of asthma has gradually increased worldwide in recent years, which has made asthma a global public health problem. However, due to its complexity and heterogeneity, there are a few academic debates on the pathogenic mechanism of asthma. The study of the pathogenesis of asthma through metabolomics has become a new research direction. We aim to uncover the metabolic pathway of children with asthma. METHODS: Liquid chromatography (LC)-mass spectrometry (MS)-based metabolomic analysis was conducted to compare urine metabolic profiles between asthmatic children (n = 30) and healthy controls (n = 10). RESULTS: Orthogonal projections to latent structures-discrimination analysis (OPLS-DA) showed that there were significant differences in metabolism between the asthma group and the control group with three different metabolites screened out, including traumatic acid, dodecanedioic acid, and glucobrassicin, and the levels of traumatic acid and dodecanedioic acid in the urine samples of asthmatic children were lower than those of healthy controls therein. Pathway enrichment analysis of differentially abundant metabolites suggested that α-linolenic acid metabolism was an asthma-related pathway. CONCLUSIONS: This study suggests that there are significant metabolic differences in the urine of asthmatic children and healthy controls, and α-linolenic acid metabolic pathways may be involved in the pathogenesis of asthma.


Asunto(s)
Asma , Metabolómica , Humanos , Asma/orina , Asma/metabolismo , Niño , Masculino , Femenino , Redes y Vías Metabólicas , Cromatografía Liquida , Espectrometría de Masas , Metaboloma , Estudios de Casos y Controles , Ácido alfa-Linolénico/orina , Ácidos Dicarboxílicos/orina
12.
J Sep Sci ; 47(11): e2400195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819780

RESUMEN

This study presents a comprehensive strategy for the selection and optimization of solvent systems in countercurrent chromatography (CCC) for the effective separation of compounds. With a focus on traditional organic solvent systems, the research introduces a "sweet space" strategy that merges intuitive understanding with mathematical accuracy, addressing the significant challenges in solvent system selection, a critical bottleneck in the widespread application of CCC. By employing a combination of volume ratios and graphical representations, including both regular and trirectangular tetrahedron models, the proposed approach facilitates a more inclusive and user-friendly strategy for solvent system selection. This study demonstrates the potential of the proposed strategy through the successful separation of gamma-linolenic acid, oleic acid, and linoleic acid from borage oil, highlighting the strategy's effectiveness and practical applicability in CCC separations.


Asunto(s)
Distribución en Contracorriente , Aceites de Plantas , Solventes , Solventes/química , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/aislamiento & purificación , Ácido gammalinolénico
13.
Lipids Health Dis ; 23(1): 296, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267068

RESUMEN

Linoleic acid (LA), as a part of the wider debate about saturated, omega-6 and omega-3 fatty acids (FAs) and health, continues to be at the center of controversy in the world of fatty acid research. A robust evidence base, however, demonstrates that higher intakes and blood levels of LA are associated with improved cardiometabolic health outcomes. LA lowers total and low-density lipoprotein cholesterol when compared with saturated fatty acids and carbohydrates. Using large prospective datasets, higher blood levels of LA were associated with lower risk of coronary heart disease, stroke and incident type-2 diabetes mellitus compared with lower levels, suggesting that, across the range of typical dietary intakes, higher LA is beneficial. Recent trials of LA-rich oils report favorable outcomes in people with common lipid disorders. However, an LA intake that is too high can impair endogenous synthesis of eicosapentaenoic acid (EPA) from alpha-linolenic acid (ALA), but the threshold at which this becomes clinically relevant is not known. In the absence of a significant intake of EPA and docosahexaenoic acid, an ideal dietary ratio of LA and ALA may be theoretically useful as it provides insight into the likely extent of endogenous EPA synthesis from ALA. Updating dietary reference intakes (DRIs) for LA and ALA is needed; however, there are insufficient data to establish RDAs for these fatty acids. The omega-6 (n-6) to omega-3 (n-3) PUFA ratio is not informative and does not shed meaningful insight about the amount of individual fatty acids in each class needed to confer health benefits.


Asunto(s)
Ácido Linoleico , Humanos , Ácido Linoleico/administración & dosificación , Diabetes Mellitus Tipo 2/sangre , Enfermedades Cardiovasculares/prevención & control , Ácido Eicosapentaenoico/sangre , Ácido Eicosapentaenoico/administración & dosificación , Ácido alfa-Linolénico/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación
14.
J Microencapsul ; 41(1): 66-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096025

RESUMEN

AIM: To evaluate the effect of different wall material (WM) matrices followed by homogenisation to encapsulate chia seed oil (CSO) using freeze drying technology. METHODS: CSO was encapsulated using three ratios (100/0, 50/50, and 100/0) of two WM matrices: MTS/WPC (modified tapioca starch-whey protein concentrate) and MD/WPC (maltodextrin-whey protein concentrate). The evaluation included encapsulation efficiency (EE), oxidative stability, and α-linolenic acid (ALA) retention. Homogenised microcapsules (-H) were then assessed for storage and thermal stability, along with cumulative oil release. RESULTS: The MD-WPC-H 50/50 microcapsules had superior EE (97.32%), higher ALA retention (60.2%), storage stability (up to 30 days), higher thermal stability (up to 700 °C), and desirable oil release in simulated condition. CONCLUSION: Selecting suitable WM and homogenisation is key for improving EE, storage, thermal stability, and targeted release. The CSO microcapsule can serve as a functional ingredient to improve the quality of diverse food products.


Asunto(s)
Salvia , Cápsulas , Proteína de Suero de Leche , Oxidación-Reducción
15.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396927

RESUMEN

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Asunto(s)
Brassica , Melatonina , Humanos , Brassica/genética , Brassica/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Senescencia de la Planta , Calcio/metabolismo , Retraso del Tratamiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma
16.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732052

RESUMEN

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Asunto(s)
delta-5 Desaturasa de Ácido Graso , Dieta Occidental , Ácido Graso Desaturasas , Hepatocitos , Animales , Masculino , Ratas , delta-5 Desaturasa de Ácido Graso/metabolismo , Dependovirus/genética , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Fructosa/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Fenotipo , Ratas Sprague-Dawley , Triglicéridos/metabolismo
17.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201362

RESUMEN

Omega-3 polyunsaturated fatty acids have received considerable attention in the field of mental health, in particular regarding the treatment of depression. This review presents an overview of current research on the role of omega-3 fatty acids in the prevention and treatment of depressive disorders. The existing body of evidence demonstrates that omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant effects that can be attributed to their modulation of neuroinflammation, neurotransmitter function, and neuroplasticity. Nevertheless, clinical trials of omega-3 supplementation have yielded inconsistent results. Some studies have demonstrated significant reductions in depressive symptoms following omega-3 treatment, whereas others have shown minimal to no beneficial impact. A range of factors, encompassing dosage, the ratio of EPA to DHA, and baseline nutritional status, have been identified as having a potential impact on the noted results. Furthermore, it has been suggested that omega-3 fatty acids may act as an adjunctive treatment for those undergoing antidepressant treatment. Notwithstanding these encouraging findings, discrepancies in study designs and variability in individual responses underscore the necessity of further research in order to establish uniform, standardized guidelines for the use of omega-3 fatty acids in the management of depressive disorders.


Asunto(s)
Antidepresivos , Depresión , Ácidos Grasos Omega-3 , Humanos , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Suplementos Dietéticos , Ácido Eicosapentaenoico/uso terapéutico , Ácido Eicosapentaenoico/farmacología , Animales , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Docosahexaenoicos/farmacología
18.
Molecules ; 29(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275038

RESUMEN

A nutritional approach could be a promising strategy to prevent or decrease the progression of neurodegenerative disorders such as Parkinson's disease (PD). The neuroprotective role of walnut oil (WO) was investigated in Drosophila melanogaster treated with rotenone (Rot), as a PD model, WO, or their combination, and compared to controls. WO reduced mortality and improved locomotor activity impairment after 3 and 7 days, induced by Rot. LC-MS analyses of fatty acid levels in Drosophila heads showed a significant increase in linolenic (ALA) and linoleic acid (LA) both in flies fed with the WO-enriched diet and in those treated with the association of WO with Rot. Flies supplemented with the WO diet showed an increase in brain dopamine (DA) level, while Rot treatment significantly depleted dopamine content; conversely, the association of Rot with WO did not modify DA content compared to controls. The greater intake of ALA and LA in the enriched diet enhanced their levels in Drosophila brain, suggesting a neuroprotective role of polyunsaturated fatty acids against Rot-induced neurotoxicity. The involvement of the dopaminergic system in the improvement of behavioral and biochemical parameters in Drosophila fed with WO is also suggested.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Juglans , Enfermedad de Parkinson , Aceites de Plantas , Animales , Drosophila melanogaster/efectos de los fármacos , Juglans/química , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Aceites de Plantas/farmacología , Aceites de Plantas/química , Dopamina/metabolismo , Rotenona , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
19.
J Sci Food Agric ; 104(6): 3175-3184, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105390

RESUMEN

Bakery products have gained prominence in modern diets due to their convenience and accessibility, often serving as staple meals across diverse regions. However, the fats used in these products are rich in saturated fatty acids and often comprise trans fatty acids, which are considered as a major biomarker for non-communicable diseases like cardiovascular disorders, obesity and diabetes. Additionally, these fats lack the essential omega-3 fatty acids, which are widely known for their therapeutic benefits. They play a major role in lowering the risk of cardiovascular diseases, cancer and diabetes. Thus, there is need for incorporating these essential fatty acids into bakery fats. Nevertheless, fortifying food products with polyunsaturated fatty acids (PUFAs) poses several challenges due to their high susceptibility to oxidation. This oxidative deterioration leads to not only the formation of undesirable flavors, but also a loss of nutritional value in the final products. This review focuses on the development of healthier trans-fat-free bakery fat enriched with omega-3 fatty acids and its effect on the physicochemical, functional, sensory and nutritional properties of bakery fats and products. Further, the role of various technologies like physical blending, enzymatic interesterification and encapsulation to improve the stability of PUFA-rich bakery fat is discussed, where microencapsulation emerged as a novel and effective technology to enhance the stability and shelf life. By preventing deteriorative changes, microencapsulation ensures that the nutritional, physicochemical and sensory properties of food products remain intact. Novel modification methods like interesterification and microencapsulation used for developing PUFA-rich bakery fats have a potential to address the health risks occurring due to consumption of bakery fat having higher amount of saturated and trans fatty acids. © 2023 Society of Chemical Industry.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Ácidos Grasos Omega-3 , Ácidos Grasos trans , Humanos , Alimentos , Ácidos Grasos/química , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus/inducido químicamente , Grasas de la Dieta/efectos adversos
20.
J Sci Food Agric ; 104(6): 3352-3360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38105416

RESUMEN

BACKGROUND: Omega-3 fatty acids are known for their various health benefits. Chia is the richest vegetable source of omega-3 fatty acids. However, its oil is highly susceptible to oxidative deterioration and should be protected for incorporation into food matrices. This work aimed to study the incorporation of different chia oil microcapsules in a powdered beverage, analyzing the effect on the physicochemical characteristics and stability during storage. RESULTS: Different types of microcapsules were obtained: monolayer microcapsules using sodium caseinate and lactose as wall material, and multilayer microcapsules produced through electrostatic deposition using lecithins, chitosan, and chia mucilage as the first, second, and third layers, respectively. The results demonstrated an efficient enrichment of smoothies, with omega-3 fatty acid values ranging from 24.09% to 42.73%, while the original food matrix powder lacked this component. These powder beverages exhibited low moisture content (≤ 2.91%) and low water activity (≤ 0.39). The aerated, packed density and compressibility assays indicated that adding microcapsules made the powders less dense and compressible. The color of the original powdered beverage was not modified. The dispersibility reflected an acceptable instantaneity, reaching the maximum obscuration after 30 s of stirring. The solubility of all the enriched products was higher than 70%, whereas the pH was ~6.8. The contact angle between the powder and liquid indicated an excellent ability to be reconstituted in water. The analysis of the glass transition temperature showed that the storage temperature (25 °C) was adequate. The peroxide value of all the products was low throughout the storage (≤ 1.63 meq peroxide kg-1 of oil at 90 days at 25 ± 2 °C), thus maintaining the quality of the microencapsulated chia oil. CONCLUSIONS: The results suggest that incorporating the monolayer and multilayer chia oil microcapsules that were studied could be a viable strategy for enriching smoothies with the omega-3 fatty acids present in chia seed oil. © 2023 Society of Chemical Industry.


Asunto(s)
Ácidos Grasos Omega-3 , Extractos Vegetales , Salvia hispanica , Salvia , Salvia/química , Frutas/química , Ácidos Grasos Omega-3/química , Cápsulas , Polvos , Aceites de Plantas/química , Bebidas/análisis , Agua , Peróxidos , Ácidos Grasos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA