Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cerebellum ; 23(2): 374-382, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36810748

RESUMEN

Few studies were devoted to investigating cerebral functional changes after acute cerebellar infarction (CI). The purpose of this study was to examine the brain functional dynamics of CI using electroencephalographic (EEG) microstate analysis. And the possible heterogenicity in neural dynamics between CI with vertigo and CI with dizziness was explored. Thirty-four CI patients and 37 age- and gender-matched healthy controls(HC) were included in the study. Each included subject underwent a 19-channel video EEG examination. Five 10-s resting-state EEG epochs were extracted after data preprocessing. Then, microstate analysis and source localization were performed using the LORETA-KEY tool. Microstate parameters such as duration, coverage, occurrence, and transition probability are all extracted. The current study showed that the duration, coverage, and occurrence of microstate(Ms) B significantly increased in CI patients, but the duration and coverage of MsA and MsD decreased. Compared CI with vertigo to dizziness, finding a decreased trend in the coverage of MsD and the transition from MsA and MsB to MsD. Taken together, our study sheds new light on the dynamics of cerebral function after CI, mainly reflecting increased activity in functional networks involved in MsB and decreased activity in functional networks involved in MsA and MsD. Vertigo and dizziness post-CI may be suggested by cerebral functional dynamics. Further longitudinal studies are needed to validate and explore the alterations in brain dynamics to what extent depict the clinical traits and their potential applications in the recovery of CI.


Asunto(s)
Mapeo Encefálico , Mareo , Humanos , Mareo/etiología , Encéfalo , Electroencefalografía , Vértigo , Infarto
2.
Brain Topogr ; 37(3): 377-387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36735192

RESUMEN

Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.


Asunto(s)
Estado de Conciencia , Estado Vegetativo Persistente , Humanos , Estado de Conciencia/fisiología , Trastornos de la Conciencia/diagnóstico , Relevancia Clínica , Electroencefalografía
3.
Brain Topogr ; 37(3): 461-474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37823945

RESUMEN

Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.


Asunto(s)
Encéfalo , Electroencefalografía , Recién Nacido , Humanos , Electroencefalografía/métodos , Sueño , Benchmarking , Lenguaje
4.
Cereb Cortex ; 33(13): 8594-8604, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37106566

RESUMEN

Brain dynamics can be modeled by a sequence of transient, nonoverlapping patterns of quasi-stable electrical potentials named "microstates." While electroencephalographic (EEG) microstates among patients with chronic pain remained inconsistent in the literature, this study characterizes the temporal dynamics of EEG microstates among healthy individuals during experimental sustained pain. We applied capsaicin (pain condition) or control (no-pain condition) cream to 58 healthy participants in different sessions and recorded resting-state EEG 15 min after application. We identified 4 canonical microstates (A-D) that are related to auditory, visual, salience, and attentional networks. Microstate C had less occurrence, as were bidirectional transitions between microstate C and microstates A and B during sustained pain. In contrast, sustained pain was associated with more frequent and longer duration of microsite D, as well as more bidirectional transitions between microstate D and microstates A and B. Microstate D duration positively correlated with intensity of ongoing pain. Sustained pain improved global integration within microstate C functional network, but weakened global integration and efficiency within microstate D functional network. These results suggest that sustained pain leads to an imbalance between processes that load on saliency (microstate C) and processes related to switching and reorientation of attention (microstate D).


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Mapeo Encefálico/métodos , Atención , Dolor
5.
Cereb Cortex ; 33(13): 8620-8632, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37118893

RESUMEN

Sentence oral reading requires not only a coordinated effort in the visual, articulatory, and cognitive processes but also supposes a top-down influence from linguistic knowledge onto the visual-motor behavior. Despite a gradual recognition of a predictive coding effect in this process, there is currently a lack of a comprehensive demonstration regarding the time-varying brain dynamics that underlines the oral reading strategy. To address this, our study used a multimodal approach, combining real-time recording of electroencephalography, eye movements, and speech, with a comprehensive examination of regional, inter-regional, sub-network, and whole-brain responses. Our study identified the top-down predictive effect with a phrase-grouping phenomenon in the fixation interval and eye-voice span. This effect was associated with the delta and theta band synchronization in the prefrontal, anterior temporal, and inferior frontal lobes. We also observed early activation of the cognitive control network and its recurrent interactions with the visual-motor networks structurally at the phrase rate. Finally, our study emphasizes the importance of cross-frequency coupling as a promising neural realization of hierarchical sentence structuring and calls for further investigation.


Asunto(s)
Lenguaje , Lectura , Electroencefalografía , Encéfalo/fisiología , Lingüística
6.
Brain Topogr ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971687

RESUMEN

The visual N1 (N170) component with occipito-temporal negativity and fronto-central positivity is sensitive to visual expertise for print. Slightly later, an N200 component with an increase after stimulus repetition was reported to be specific for Chinese, but found at centro-parietal electrodes against a mastoid reference. Given the unusual location, temporal proximity to the N1, and atypical repetition behavior, we aimed at clarifying the relation between the two components. We collected 128-channel EEG data from 18 native Chinese readers during a script decision experiment. Familiar Chinese one- and two-character words were presented among unfamiliar Korean control stimuli with half of the stimuli immediately repeated. Stimulus repetition led to a focal increase in the N1 onset and to a wide-spread decrease in the N1 offset, especially for familiar Chinese and also prominently near the mastoids. A TANOVA analysis corroborated robust repetition effects in the N1 offset across ERP maps with a modulation by script familiarity around 300 ms. Microstate analyses revealed a shorter N1 microstate duration after repetitions, especially for Chinese. The results demonstrate that the previously reported centro-parietal N200 effects after repetitions reflect changes during the N1 offset at occipito-temporal electrodes including the mastoids. Although larger for Chinese, repetition effects could also be found for two-character Korean words, suggesting that they are not specific for Chinese. While the decrease of the N1 offset after repetition is in agreement with a repetition suppression effect, the microstate findings suggest that at least part of the facilitation is due to accelerated processing after repetition.

7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(1): 163-170, 2023 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-36854562

RESUMEN

Electroencephalogram (EEG) is characterized by high temporal resolution, and various EEG analysis methods have developed rapidly in recent years. The EEG microstate analysis method can be used to study the changes of the brain in the millisecond scale, and can also present the distribution of EEG signals in the topological level, thus reflecting the discontinuous and nonlinear characteristics of the whole brain. After more than 30 years of enrichment and improvement, EEG microstate analysis has penetrated into many research fields related to brain science. In this paper, the basic principles of EEG microstate analysis methods are summarized, and the changes of characteristic parameters of microstates, the relationship between microstates and brain functional networks as well as the main advances in the application of microstate feature extraction and classification in brain diseases and brain cognition are systematically described, hoping to provide some references for researchers in this field.


Asunto(s)
Encéfalo , Electroencefalografía , Cognición
8.
Neuroimage ; 258: 119346, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660463

RESUMEN

+microstate is a MATLAB toolbox for brain functional microstate analysis. It builds upon previous EEG microstate literature and toolboxes by including algorithms for source-space microstate analysis. +microstate includes codes for performing individual- and group-level brain microstate analysis in resting-state and task-based data including event-related potentials/fields. Functions are included to visualise and perform statistical analysis of microstate sequences, including novel advanced statistical approaches such as statistical testing for associated functional connectivity patterns, cluster-permutation topographic ANOVAs, and χ2 analysis of microstate probabilities in response to stimuli. Additionally, codes for simulating microstate sequences and their associated M/EEG data are included in the toolbox, which can be used to generate artificial data with ground truth microstates and to validate the methodology. +microstate integrates with widely used toolboxes for M/EEG processing including Fieldtrip, SPM, LORETA/sLORETA, EEGLAB, and Brainstorm to aid with accessibility, and includes wrappers for pre-existing toolboxes for brain-state estimation such as Hidden Markov modelling (HMM-MAR) and independent component analysis (FastICA) to aid with direct comparison with these techniques. In this paper, we first introduce +microstate before subsequently performing example analyses using open access datasets to demonstrate and validate the methodology. MATLAB live scripts for each of these analyses are included in +microstate, to act as a tutorial and to aid with reproduction of the results presented in this manuscript.


Asunto(s)
Encéfalo , Electroencefalografía , Algoritmos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados , Humanos
9.
Brain Topogr ; 35(5-6): 583-598, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289133

RESUMEN

The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) represents an increasingly popular tool to non-invasively probe cortical excitability in humans. TMS-evoked brain potentials (TEPs) are composed of successive components reflecting the propagation of activity from the site of stimulation, thereby providing information on the state of brain networks. However, TMS also generates peripherally evoked sensory activity which contributes to TEP waveforms and hinders their interpretation.In the present study, we examined whether topographic analysis of TEPs elicited by stimulation of two distinct cortical targets can disentangle confounding signals from the genuine TMS-evoked cortical response. In 20 healthy subjects, TEPs were evoked by stimulation of the left primary motor cortex (M1) and the left angular gyrus (AG). Topographic dissimilarity analysis and microstate analysis were used to identify target-specific TEP components. Furthermore, we explored the contribution of cortico-spinal activation by comparing TEPs elicited by stimulation below and above the threshold to evoke motor responses.We observed topographic dissimilarity between M1 and AG TEPs until approximately 80 ms post-stimulus and identified early TEP components that likely reflect specific TMS-evoked activity. Later components peaking at 100 and 180 ms were similar in both datasets and attributed to sensory-evoked activity. Analysis of sub- and supra-threshold M1 TEPs revealed a component at 17 ms that possibly reflects the cortico-spinal output of the stimulated area. Moreover, supra-threshold M1 activation influenced the topography of almost all later components. Together, our results demonstrate the utility of topographic analysis for the evaluation and interpretation of TMS-evoked EEG responses.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Potenciales Evocados/fisiología , Electroencefalografía/métodos , Encéfalo
10.
Neuroimage ; 231: 117861, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592245

RESUMEN

Electroencephalogram (EEG) microstate analysis is a promising and effective spatio-temporal method that can segment signals into several quasi-stable classes, providing a great opportunity to investigate short-range and long-range neural dynamics. However, there are still many controversies in terms of reproducibility and reliability when selecting different parameters or datatypes. In this study, five electrode configurations (91, 64, 32, 19, and 8 channels) were used to measure the reliability of microstate analysis at different electrode densities during propofol-induced sedation. First, the microstate topography and parameters at five different electrode densities were compared in the baseline (BS) condition and the moderate sedation (MD) condition, respectively. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were introduced to quantify the consistency of the microstate parameters. Second, statistical analysis and classification between BS and MD were performed to determine whether the microstate differences between different conditions remained stable at different electrode densities, and ICC was also calculated between the different conditions to measure the consistency of the results in a single condition. The results showed that in both the BS or MD condition, respectively, there were few significant differences in the microstate parameters among the 91-, 64-, and 32-channel configurations, with most of the differences observed between the 19- or 8-channel configurations and the other configurations. The ICC and CV data also showed that the consistency among the 91-, 64-, and 32-channel configurations was better than that among all five electrode configurations after including the 19- and 8-channel configurations. Furthermore, the significant differences between the conditions in the 91-channel configuration remained stable at the 64- and 32-channel resolutions, but disappeared at the 19- and 8-channel resolutions. In addition, the classification and ICC results showed that the microstate analysis became unreliable with fewer than 20 electrodes. The findings of this study support the hypothesis that microstate analysis of different brain states is more reliable with higher electrode densities; the use of a small number of channels is not recommended.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Electroencefalografía/normas , Hipnóticos y Sedantes/farmacología , Propofol/farmacología , Adulto , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Electrodos/normas , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
11.
Brain Topogr ; 34(5): 555-567, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34258668

RESUMEN

Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies-the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states-AS and QS-in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.


Asunto(s)
Encéfalo , Electroencefalografía , Algoritmos , Mapeo Encefálico , Humanos , Recién Nacido , Sueño
12.
Can J Stat ; 49(1): 89-106, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35999969

RESUMEN

EEG microstate analysis investigates the collection of distinct temporal blocks that characterize the electrical activity of the brain. Brain activity within each microstate is stable, but activity switches rapidly between different microstates in a nonrandom way. We propose a Bayesian nonparametric model that concurrently estimates the number of microstates and their underlying behaviour. We use a Markov switching vector autoregressive (VAR) framework, where a hidden Markov model (HMM) controls the nonrandom state switching dynamics of the EEG activity and a VAR model defines the behaviour of all time points within a given state. We analyze the resting-state EEG data from twin pairs collected through the Minnesota Twin Family Study, consisting of 70 epochs per participant, where each epoch corresponds to 2 s of EEG data. We fit our model at the twin pair level, sharing information within epochs from the same participant and within epochs from the same twin pair. We capture within twin-pair similarity, using an Indian buffet process, to consider an infinite library of microstates, allowing each participant to select a finite number of states from this library. The state spaces of highly similar twins may completely overlap while dissimilar twins could select distinct state spaces. In this way, our Bayesian nonparametric model defines a sparse set of states that describe the EEG data. All epochs from a single participant use the same set of states and are assumed to adhere to the same state switching dynamics in the HMM model, enforcing within-participant similarity.


L'analyse des micro-états d'un électroencéphalogramme (EEG) porte sur une collection de différents blocs temporels caractérisant l'activité électrique du cerveau. L'activité cérébrale est stable à l'intérieur de chaque bloc, mais elle varie rapidement entre les différents micro-états de façon non aléatoire. Les auteurs proposent un modèle bayésien non paramétrique qui estime simultanément le nombre de micro-états et leur comportement sous-jacent. Ils utilisent le cadre de vecteurs autorégressifs (VAR) markoviens commutants où un modèle de Markov caché (MMC) contrôle les dynamiques de commutations non aléatoires de l'activité de l'EEG et le modèle de VAR définit le comportement à travers le temps pour un état donné. Ils analysent des données d'EEG au repos de paires de jumeaux collectées dans l'étude des jumeaux du Minnesota comportant 70 époques de deux secondes d'EEG chacune pour chaque participant. Les auteurs ajustent leur modèle au niveau des paires de jumeaux, partageant les informations d'un participant et de son jumeau pour une même époque. Ils capturent les similarités dans la paire de jumeaux avec un processus du buffet indien afin de constituer une bibliothèque infinie de micro-états et de permettre à chaque participant de choisir un ensemble fini d'états provenant de celle-ci. L'espace d'états de jumeaux très semblables peut se chevaucher entièrement alors que des jumeaux différents pourraient avoir des espaces distincts. Le modèle bayésien non paramétrique des auteurs définit ainsi un ensemble creux d'états qui décrivent les données d'EEG. Toutes les époques d'un même participant utilisent le même ensemble d'états, et elles doivent adhérer au même régime de changement d'état pour leur dynamique de commutation selon le MMC, forçant ainsi une similarité intra-participant.

13.
Brain Topogr ; 31(5): 848-862, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29666960

RESUMEN

We applied the following methods to resting-state EEG data from patients with disorders of consciousness (DOC) for consciousness indexing and outcome prediction: microstates, entropy (i.e. approximate, permutation), power in alpha and delta frequency bands, and connectivity (i.e. weighted symbolic mutual information, symbolic transfer entropy, complex network analysis). Patients with unresponsive wakefulness syndrome (UWS) and patients in a minimally conscious state (MCS) were classified into these two categories by fitting and testing a generalised linear model. We aimed subsequently to develop an automated system for outcome prediction in severe DOC by selecting an optimal subset of features using sequential floating forward selection (SFFS). The two outcome categories were defined as UWS or dead, and MCS or emerged from MCS. Percentage of time spent in microstate D in the alpha frequency band performed best at distinguishing MCS from UWS patients. The average clustering coefficient obtained from thresholding beta coherence performed best at predicting outcome. The optimal subset of features selected with SFFS consisted of the frequency of microstate A in the 2-20 Hz frequency band, path length obtained from thresholding alpha coherence, and average path length obtained from thresholding alpha coherence. Combining these features seemed to afford high prediction power. Python and MATLAB toolboxes for the above calculations are freely available under the GNU public license for non-commercial use ( https://qeeg.wordpress.com ).


Asunto(s)
Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/fisiopatología , Estado de Conciencia , Electroencefalografía/métodos , Adolescente , Adulto , Anciano , Ritmo alfa/fisiología , Ritmo beta/fisiología , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Estado Vegetativo Persistente , Valor Predictivo de las Pruebas , Pronóstico , Resultado del Tratamiento , Vigilia
14.
Neuroimage ; 84: 383-93, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24001456

RESUMEN

Nociceptive laser pulses elicit temporally-distinct cortical responses (the N1, N2 and P2 waves of laser-evoked potentials, LEPs) mainly reflecting the activity of the primary somatosensory cortex (S1) contralateral to the stimulated side, and of the bilateral operculoinsular and cingulate cortices. Here, by performing two different EEG experiments and applying a range of analysis approaches (microstate analysis, scalp topography, single-trial estimation), we describe a distinct component in the last part of the human LEP response (P4 wave). We obtained three main results. First, the LEP is reliably decomposed in four main and distinct functional microstates, corresponding to the N1, N2, P2, and P4 waves, regardless of stimulus territory. Second, the scalp and source configurations of the P4 wave follow a clear somatotopical organization, indicating that this response is likely to be partly generated in contralateral S1. Third, single-trial latencies and amplitudes of the P4 are tightly coupled with those of the N1, and are similarly sensitive to experimental manipulations (e.g., to crossing the hands over the body midline), suggesting that the P4 and N1 may have common neural sources. These results indicate that the P4 wave is a clear and distinct LEP component, which should be considered in LEP studies to achieve a comprehensive understanding of the brain response to nociceptive stimulation.


Asunto(s)
Ondas Encefálicas/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Red Nerviosa/fisiología , Nocicepción/fisiología , Estimulación Física/métodos , Corteza Somatosensorial/fisiopatología , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino
15.
Front Neurosci ; 18: 1355512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550568

RESUMEN

Introduction: Recently, the microstate analysis method has been widely used to investigate the temporal and spatial dynamics of electroencephalogram (EEG) signals. However, most studies have focused on EEG at resting state, and few use microstate analysis to study emotional EEG. This paper aims to investigate the temporal and spatial patterns of EEG in emotional states, and the specific neurophysiological significance of microstates during the emotion cognitive process, and further explore the feasibility and effectiveness of applying the microstate analysis to emotion recognition. Methods: We proposed a KLGEV-criterion-based microstate analysis method, which can automatically and adaptively identify the optimal number of microstates in emotional EEG. The extracted temporal and spatial microstate features then served as novel feature sets to improve the performance of EEG emotion recognition. We evaluated the proposed method on two publicly available emotional EEG datasets: the SJTU Emotion EEG Dataset (SEED) and the Database for Emotion Analysis using Physiological Signals (DEAP). Results: For the SEED dataset, 10 microstates were identified using the proposed method. These temporal and spatial features were fed into AutoGluon, an open-source automatic machine learning model, yielding an average three-class accuracy of 70.38% (±8.03%) in subject-dependent emotion recognition. For the DEAP dataset, the method identified 9 microstates. The average accuracy in the arousal dimension was 74.33% (±5.17%) and 75.49% (±5.70%) in the valence dimension, which were competitive performance compared to some previous machine-learning-based studies. Based on these results, we further discussed the neurophysiological relationship between specific microstates and emotions, which broaden our knowledge of the interpretability of EEG microstates. In particular, we found that arousal ratings were positively correlated with the activity of microstate C (anterior regions of default mode network) and negatively correlated with the activity of microstate D (dorsal attention network), while valence ratings were positively correlated with the activity of microstate B (visual network) and negatively correlated with the activity of microstate D (dorsal attention network). Discussion: In summary, the findings in this paper indicate that the proposed KLGEV-criterion-based method can be employed to research emotional EEG signals effectively, and the microstate features are promising feature sets for EEG-based emotion recognition.

16.
Front Neurosci ; 18: 1321001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389790

RESUMEN

The pathophysiology of recurrent isolated sleep paralysis (RISP) has yet to be fully clarified. Very little research has been performed on electroencephalographic (EEG) signatures outside RISP episodes. This study aimed to investigate whether sleep is disturbed even without the occurrence of a RISP episode and in a stage different than conventional REM sleep. 17 RISP patients and 17 control subjects underwent two consecutive full-night video-polysomnography recordings. Spectral analysis was performed on all sleep stages in the delta, theta, and alpha band. EEG microstate (MS) analysis was performed on the NREM 3 phase due to the overall high correlation of subject template maps with canonical templates. Spectral analysis showed a significantly higher power of theta band activity in REM and NREM 2 sleep stages in RISP patients. The observed rise was also apparent in other sleep stages. Conversely, alpha power showed a downward trend in RISP patients' deep sleep. MS maps similar to canonical topographies were obtained indicating the preservation of prototypical EEG generators in RISP patients. RISP patients showed significant differences in the temporal dynamics of MS, expressed by different transitions between MS C and D and between MS A and B. Both spectral analysis and MS characteristics showed abnormalities in the sleep of non-episodic RISP subjects. Our findings suggest that in order to understand the neurobiological background of RISP, there is a need to extend the analyzes beyond REM-related processes and highlight the value of EEG microstate dynamics as promising functional biomarkers of RISP.

17.
Front Hum Neurosci ; 18: 1372985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638803

RESUMEN

Introduction: Microstate analysis enables the characterization of quasi-stable scalp potential fields on a sub-second timescale, preserving the temporal dynamics of EEG and spatial information of scalp potential distributions. Owing to its capacity to provide comprehensive pathological insights, it has been widely applied in the investigation of schizophrenia (SCZ). Nevertheless, previous research has primarily concentrated on differences in individual microstate temporal characteristics, neglecting potential distinctions in microstate semantic sequences and not fully considering the issue of the universality of microstate templates between SCZ patients and healthy individuals. Methods: This study introduced a microstate semantic modeling analysis method aimed at schizophrenia recognition. Firstly, microstate templates corresponding to both SCZ patients and healthy individuals were extracted from resting-state EEG data. The introduction of a dual-template strategy makes a difference in the quality of microstate sequences. Quality features of microstate sequences were then extracted from four dimensions: Correlation, Explanation, Residual, and Dispersion. Subsequently, the concept of microstate semantic features was proposed, decomposing the microstate sequence into continuous sub-sequences. Specific semantic sub-sequences were identified by comparing the time parameters of sub-sequences. Results: The SCZ recognition test was performed on the public dataset for both the quality features and semantic features of microstate sequences, yielding an impressive accuracy of 97.2%. Furthermore, cross-subject experimental validation was conducted, demonstrating that the method proposed in this paper achieves a recognition rate of 96.4% between different subjects. Discussion: This research offers valuable insights for the clinical diagnosis of schizophrenia. In the future, further studies will seek to augment the sample size to enhance the effectiveness and reliability of this method.

18.
Front Neurosci ; 18: 1295615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370436

RESUMEN

Background: The investigation of mindfulness meditation practice, classically divided into focused attention meditation (FAM), and open monitoring meditation (OMM) styles, has seen a long tradition of theoretical, affective, neurophysiological and clinical studies. In particular, the high temporal resolution of magnetoencephalography (MEG) or electroencephalography (EEG) has been exploited to fill the gap between the personal experience of meditation practice and its neural correlates. Mounting evidence, in fact, shows that human brain activity is highly dynamic, transiting between different brain states (microstates). In this study, we aimed at exploring MEG microstates at source-level during FAM, OMM and in the resting state, as well as the complexity and criticality of dynamic transitions between microstates. Methods: Ten right-handed Theravada Buddhist monks with a meditative expertise of minimum 2,265 h participated in the experiment. MEG data were acquired during a randomized block design task (6 min FAM, 6 min OMM, with each meditative block preceded and followed by 3 min resting state). Source reconstruction was performed using eLORETA on individual cortical space, and then parcellated according to the Human Connect Project atlas. Microstate analysis was then applied to parcel level signals in order to derive microstate topographies and indices. In addition, from microstate sequences, the Hurst exponent and the Lempel-Ziv complexity (LZC) were computed. Results: Our results show that the coverage and occurrence of specific microstates are modulated either by being in a meditative state or by performing a specific meditation style. Hurst exponent values in both meditation conditions are reduced with respect to the value observed during rest, LZC shows significant differences between OMM, FAM, and REST, with a progressive increase from REST to FAM to OMM. Discussion: Importantly, we report changes in brain criticality indices during meditation and between meditation styles, in line with a state-like effect of meditation on cognitive performance. In line with previous reports, we suggest that the change in cognitive state experienced in meditation is paralleled by a shift with respect to critical points in brain dynamics.

19.
Sci Rep ; 14(1): 8861, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632246

RESUMEN

Attention as a cognition ability plays a crucial role in perception which helps humans to concentrate on specific objects of the environment while discarding others. In this paper, auditory attention detection (AAD) is investigated using different dynamic features extracted from multichannel electroencephalography (EEG) signals when listeners attend to a target speaker in the presence of a competing talker. To this aim, microstate and recurrence quantification analysis are utilized to extract different types of features that reflect changes in the brain state during cognitive tasks. Then, an optimized feature set is determined by employing the processes of significant feature selection based on classification performance. The classifier model is developed by hybrid sequential learning that employs Gated Recurrent Units (GRU) and Convolutional Neural Network (CNN) into a unified framework for accurate attention detection. The proposed AAD method shows that the selected feature set achieves the most discriminative features for the classification process. Also, it yields the best performance as compared with state-of-the-art AAD approaches from the literature in terms of various measures. The current study is the first to validate the use of microstate and recurrence quantification parameters to differentiate auditory attention using reinforcement learning without access to stimuli.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Humanos , Mapeo Encefálico/métodos , Aprendizaje Automático , Atención , Electroencefalografía/métodos
20.
Brain Sci ; 13(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759889

RESUMEN

Motor imagery (MI) electroencephalography (EEG) is natural and comfortable for controllers, and has become a research hotspot in the field of the brain-computer interface (BCI). Exploring the inter-subject MI-BCI performance variation is one of the fundamental problems in MI-BCI application. EEG microstates with high spatiotemporal resolution and multichannel information can represent brain cognitive function. In this paper, four EEG microstates (MS1, MS2, MS3, MS4) were used in the analysis of the differences in the subjects' MI-BCI performance, and the four microstate feature parameters (the mean duration, the occurrences per second, the time coverage ratio, and the transition probability) were calculated. The correlation between the resting-state EEG microstate feature parameters and the subjects' MI-BCI performance was measured. Based on the negative correlation of the occurrence of MS1 and the positive correlation of the mean duration of MS3, a resting-state microstate predictor was proposed. Twenty-eight subjects were recruited to participate in our MI experiments to assess the performance of our resting-state microstate predictor. The experimental results show that the average area under curve (AUC) value of our resting-state microstate predictor was 0.83, and increased by 17.9% compared with the spectral entropy predictor, representing that the microstate feature parameters can better fit the subjects' MI-BCI performance than spectral entropy predictor. Moreover, the AUC of microstate predictor is higher than that of spectral entropy predictor at both the single-session level and average level. Overall, our resting-state microstate predictor can help MI-BCI researchers better select subjects, save time, and promote MI-BCI development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA