Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(39): e202208438, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35900933

RESUMEN

Regulating molecular structure of donor-acceptor (D-A) polymer is a promising strategy to improve photoactivity. Herein, a porous nanorod-like D-A polymer is synthesized via a strategy of supramolecular chemistry combined with subsequent calcination treatment. This polymer consists of benzene rings (D) and triazine (A) that are linked by amido bond (-CONH-). -CONH- further partially cracks into cyano groups (-C≡N) (A) under calcination. The ratio of benzene to triazine could be tuned to adjust the -C≡N content by varying the calcination atmosphere. Such regulation of molecular structure could modulate the band structure of D-A polymer and endow it with unique porous nanorod-like morphology, leading to the achievement of two-electron oxygen reduction and two-electron water oxidation and the improvement of exciton splitting, O2 adsorption and activation. These merits synergistically ensure a highly efficient and stable photocatalytic H2 O2 production in pure water.

2.
J Colloid Interface Sci ; 675: 293-301, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38970914

RESUMEN

Lignite, as one of the coal materials, has been considered a promising precursor for hard carbon anodes in sodium-ion batteries (SIBs) owing to its low cost and high carbon yield. Nevertheless, hard carbon directly derived from lignite pyrolysis typically exhibits highly ordered microstructure with narrow interlayer spacing and relatively unreactive interfacial properties, owing to the abundance of polycyclic aromatic hydrocarbons and inert aromatic rings within its molecular composition. Herein, an innovative demineralization activating strategy is established to simultaneously modulate the interfacial properties and the microstructure of lignite-derived carbon for the development of high-performance SIBs. Demineralization process not only creates numerous void spaces in the matrix of lignite precursor to assist aromatic hydrocarbon rearrangement, thereby reducing the ordering and expanding interlayer spacing, but also exposes more interfacial oxygen-containing functional groups to effectively increasing the sodium storage active sites. As a result, the optimal demineralized lignite-derived hard carbon (DLHC 1300) delivers a high reversible capacity of 335.6 mAh g-1 at 30 mA g-1, superior rate performance of 246.3 mAh g-1 at 6 A g-1 and nearly 100 % capacity retention after 1100 cycles at 1A g-1. Furthermore, the optimized DLHC 1300 material functions as an outstanding anode in sodium ion full cells. This work significantly advances the development of low-cost, high-performance commercial hard carbon anodes for SIBs.

3.
J Colloid Interface Sci ; 660: 845-858, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277841

RESUMEN

Sulfur (S) is an efficient dopant to enhance the sodium storage of carbon, yet the conventional in-situ/post treatments cause unstable S configuration or lower S content, and hence unsatisfied electrochemical performance. Herein, we investigate sulfurization at various cross-link state of coal tar pitch (CTP) (pristine, coke, and carbonized states), and the microstructure of the products (SCTP). Experimental and calculational results reveal that introducing S in the coke state of CTP is essential for achieving abundant and stable C-Sx-C bonds between carbon layers. Moreover, this innovative strategy not only achieves a high S content, but also avoids the liquid carbonization, resulting in a hierarchically porous structure with a small particle size. As a result, the SCTP delivers a sodium storage capacity of 318 mA h g-1 at 0.1 A g-1 after 200th cycle, and the capacity maintains 207 mA h g-1 with capacity retention of 99 % after 1000th cycle at 2.0 A g-1, in half-cells. Moreover, the sample shows a considerable discharge capacity of 328 mA h g-1anode at 0.05 A g-1 in full-cells. Consequently, this approach offers a novel pathway for large-scale production of thermoplastic-derived carbons in battery industry.

4.
ACS Appl Mater Interfaces ; 16(3): 3564-3575, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206319

RESUMEN

The nitrogen oxidation reaction (NOR) to form nitric acid by applying natural air and H2O under ambient conditions is a sustainable approach to achieving efficient and selective N2 fixation for industrial applications. In this study, four kinds of Co3O4 catalysts with a controllable microstructure were prepared to catalyze the direct NOR of N2 in the air. At the same time, the reaction mechanism of the conversion of N2 to nitric acid under catalytic ozonation was explored through experimental research and density functional theory (DFT) calculation. The results showed that the prepared porous nanosheets self-assembled into microflower-structured samples. The HCOF showed extraordinary catalytic performance for direct NOR to produce a high concentration of nitric acid. The maximum rate of nitric acid formation could be as high as 6.67 mmol/(h·gcat), which was higher than those of most reported photocatalytic or electrocatalytic N2 fixation processes for direct NOR to produce NO3-. Furthermore, the 15N isotopic-labeling experiment confirmed that the produced NO3- originated from N2 in the air by the direct NOR process. In the direct NOR mechanism, inert N2 molecules were captured at the Co3+ active sites by the acceptance-donation electron conduction mode, and the oxygen vacancies boosted the chemical adsorption of N2 molecules and greatly reduced the activation energy barrier of N2 molecules. The active free radicals •OH and •O2- generated by the decomposition of O3 molecules oxidized N2 to the intermediate *NO, which was the rate-determining step, and it was then absorbed by water to form nitric acid. The air catalytic ozonation method in this study was proposed as a facile pathway for efficient nitrogen fixation. This research provides a new method for environmental protection and efficient production of nitric acid at distributed sources.

5.
Int J Biol Macromol ; 267(Pt 2): 131592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621571

RESUMEN

Nanocellulose is a kind of renewable natural polymer material with high specific surface area, high crystallinity, and strong mechanical properties. RC nanofibers (RCNFs) have attracted an increasing attention in various applications due to their high aspect ratio and good flexibility. Herein, a novel and facile strategy for RCNFs preparation with high-speed shear induced in urea solution through "bottom-up" approach was proposed in this work. Results indicated that the average diameter and yield of RCNF was approach to 136.67 nm and 53.3 %, respectively. Meanwhile, due to the regular orientation RC chains and arrangement micro-morphology, RCNFs exhibited high crystallinity, strong mechanical properties, stable thermal degradation performance, and excellent UV resistance. In this study, a novel regeneration process with high-speed shear induced was developed to produce RCNFs with excellent properties. This study paved a strategy for future low-energy production of nanofibers and high value-added conversion applications of agricultural waste.


Asunto(s)
Celulosa , Nanofibras , Urea , Zea mays , Nanofibras/química , Celulosa/química , Zea mays/química , Urea/química , Soluciones
6.
ACS Appl Mater Interfaces ; 16(10): 12599-12611, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38437708

RESUMEN

The rapid decline of the reversible capacity originating from microcracks and surface structural degradation during cycling is still a serious obstacle to the practical utilization of Ni-rich LiNixCoyAl1-x-yO2 (x ≥ 0.8) cathode materials. In this research, a feasible Hf-doping method is proposed to improve the electrochemical performance of LiNi0.9Co0.08Al0.02O2 (NCA90) through microstructural optimization and structural enhancement. The addition of Hf refines the primary particles of NCA90 and develops them into a short rod shape, making them densely arranged along the radial direction, which increases the secondary particle toughness and reduces their internal porosity. Moreover, Hf-doping stabilizes the layered structure and suppresses the side reactions through the introduction of robust Hf-O bonding. Multiple advantages of Hf-doping allowed significant improvement of the cycling stability of LiNi0.895Co0.08Al0.02Hf0.005O2 (NCA90-Hf0.5), with a reversible capacity retention rate of 95.3% after 100 cycles at 1 C, as compared with only 82.0% for the pristine NCA90. The proposed synergetic strategy combining microstructural engineering and crystal structure enhancement can effectively resolve the inherent capacity fading of Ni-rich layered cathodes, promoting their practical application for next-generation lithium-ion batteries.

7.
Materials (Basel) ; 16(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37445142

RESUMEN

Benefiting from their high surface areas, excellent conductivity, and environmental-friendliness, porous carbon nanospheres (PCSs) are of particular attraction for the anodes of lithium-ion batteries (LIBs). However, the regulation of carbon nanospheres with controlled pore distribution and graphitization for delivering high Li+ storage behavior is still under investigation. Here, we provide a facile approach to obtain PCSs with different microstructures via modulating the carbonization temperatures. With the processing temperature of 850 °C, the optimized PCSs exhibit an increased surface area, electrical conductivity, and enhanced specific capacity (202 mA h g-1 at 2 A g-1) compared to the PCSs carbonized at lower temperatures. Additionally, PCSs 850 provide excellent cyclability with a capacity retention of 83% for 500 cycles. Such work can pave a new pathway to achieve carbon nanospheres with excellent performances in LIBs.

8.
Polymers (Basel) ; 15(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835933

RESUMEN

High-strength large-volume marine concrete is a critical material required for the construction of large-span sea-crossing bridges. However, the widespread issue of cracking in this concrete type significantly impacts the durability and load-bearing capacity of concrete structures. Dealing with these cracks not only delays construction schedules but also increases project costs. Addressing these pressing technical issues, this project proposes the use of newly developed high-modulus heat-shrinkable fibers (polyethylene terephthalate fiber, also known as PET fiber) from the textile industry. These fibers utilize the heat generated during the hydration of large-volume concrete to trigger its contraction, applying three-dimensional micro-prestressing stress to enhance its crack resistance, while simultaneously incorporating prewetted aggregates with high-performance micro-porous structures and utilizing their internal curing effect to reduce concrete shrinkage. This helps to minimize the loss of micro-prestressing stress caused by concrete shrinkage and creep. This synergistic approach aims to improve the crack resistance of high-strength large-volume marine concrete. By employing modern testing and simulation analysis techniques, this study aims to uncover the mechanism by which the heat-shrinkable fibers exert micro-prestressing stress on concrete and the water release mechanism of internal curing aggregates during the temperature rise and fall stages of large-volume concrete. It seeks to elucidate the cooperative regulation of the microstructure and performance enhancement mechanisms of high-strength large-volume marine concrete by the heat-shrinkable fibers and internal curing aggregates. This research will lead to the development of novel methods for the design and crack control of high-strength large-volume marine concrete, which will be validated through engineering demonstrations. The outcomes of this study will provide theoretical foundations and technical support for the preparation of the crack-resistant large-volume marine concrete used in large-span bridges.

9.
Chemosphere ; 313: 137195, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36370767

RESUMEN

In this work, TiO2 nanofiber membrane (NFM) with a complete surface microstructure was prepared through regulating the surface microstructure of TiO2 NFM by doping Zr. The crystal structures and morphological analyses indicated that the nanofiber membranes were consisted by disordered accumulation of Zr-doped TiO2 nanofibers with a crack-free surface, small grain size and high aspect ratio. When the doping amount of Zr was 0.8 mL, the tensile strength of the doped membranes reached 1.27 MPa, which was 60.7% higher than that of pure TiO2 NFM. The photocatalytic performance of Zr-doped TiO2 NFM was evaluated by the degradation performance of Methylene orange (MO) under simulated sunlight irradiation. Compared with the undoped TiO2 NFM, the 0.8-Zr/TiO2 NFM presented a higher catalytic degradation efficiency (improved by 69.6%), and the photocatalytic performance maintained stable after five circulating. It was found that the doping of Zr ions effectively limited the surface crack size and grain size of TiO2 nanofibers, thereby improving the tensile strength, and enhanced the surface area effect and carrier transfer efficiency of TiO2 NFM. On the other hand, a narrow band-gap was obtained by doping a small amount of Zr ions, which expanded the visible light response range to improve the photocatalytic performance of TiO2 nanofibers.


Asunto(s)
Nanofibras , Nanofibras/química , Luz , Titanio/química
10.
Chem Asian J ; 17(17): e202200481, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35768903

RESUMEN

Recently, slippery surfaces with controllable droplet sliding have aroused much attention in both fundamental research and realistic applications. However, for almost all existing surfaces, constant stimuli such as heat, light, magnetic field, etc., are indispensable. Herein, by constructing pit structures on a shape memory polymer and further infusing oil with low surface tension, we report a shape memory slippery surface that can overcome the above imperfection. Based on the shape memory performance, the surface can memorize a diverse pit size as the surface is stretched or recovered. With the variation of pit structure, the sliding performances for both water and organic liquid droplets can be reversibly adjusted between the rolling and pinning states. This work, based on the shape memory effect, reports smart droplet sliding control through regulating the surface microstructure, which not only provides a strategy for droplet sliding control, but also offers some ideas for designing novel intelligent slippery surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA