Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(7): 358, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687153

RESUMEN

Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mutágenos , Mutación/genética , Plantas/genética
3.
Front Microbiol ; 12: 646062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122360

RESUMEN

Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST ) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.

4.
Thromb Res ; 159: 65-75, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28987708

RESUMEN

Von Willebrand disease (VWD) is a bleeding disorder that is mainly caused by mutations in the multimeric protein von Willebrand factor (VWF). These mutations may lead to deficiencies in plasma VWF or dysfunctional VWF. VWF is a heterogeneous protein and over the past three decades, hundreds of VWF mutations have been identified. In this review we have organized all reported mutations, spanning a timeline from the late eighties until early 2017. This resulted in an overview of 750 unique mutations that are divided over the VWD types 1, 2A, 2B, 2M, 2N and 3. For many of these mutations the disease-causing effects have been characterized in vitro through expression studies, ex vivo by analysis of patient-derived endothelial cells, as well as in animal or (bio)physical models. Here we describe the mechanisms associated with the VWF mutations per VWD type.


Asunto(s)
Enfermedades de von Willebrand/genética , Factor de von Willebrand/metabolismo , Humanos , Mutación , Enfermedades de von Willebrand/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA