RESUMEN
Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Flavanonas , Hígado , Humanos , Animales , Ratones , Hígado/metabolismo , Transducción de Señal , Hepatocitos/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismoRESUMEN
Chalcone isomerase-like (CHIL) protein is a noncatalytic protein that enhances flavonoid content in green plants by serving as a metabolite binder and a rectifier of chalcone synthase (CHS). Rectification of CHS catalysis occurs through direct protein-protein interactions between CHIL and CHS, which alter CHS kinetics and product profiles, favoring naringenin chalcone (NC) production. These discoveries raise questions about how CHIL proteins interact structurally with metabolites and how CHIL-ligand interactions affect interactions with CHS. Using differential scanning fluorimetry on a CHIL protein from Vitis vinifera (VvCHIL), we report that positive thermostability effects are induced by the binding of NC, and negative thermostability effects are induced by the binding of naringenin. NC further causes positive changes to CHIL-CHS binding, whereas naringenin causes negative changes to VvCHIL-CHS binding. These results suggest that CHILs may act as sensors for ligand-mediated pathway feedback by influencing CHS function. The protein X-ray crystal structure of VvCHIL compared with the protein X-ray crystal structure of a CHIL from Physcomitrella patens reveals key amino acid differences at a ligand-binding site of VvCHIL that can be substituted to nullify the destabilizing effect caused by naringenin. Together, these results support a role for CHIL proteins as metabolite sensors that modulate the committed step of the flavonoid pathway.
Asunto(s)
Liasas Intramoleculares , Proteínas de Plantas , Vitis , Sitios de Unión , Bryopsida/enzimología , Cristalografía por Rayos X , Estabilidad de Enzimas , Flavonoides/metabolismo , Fluorometría , Liasas Intramoleculares/química , Liasas Intramoleculares/metabolismo , Ligandos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vitis/enzimologíaRESUMEN
Flavonoids are important natural compounds characterized by their extensive biological activities. Citrus flavonoids represent a significant segment of the broader flavonoid category. Naringenin, an integral part of this series, is recognized for its powerful anti-inflammatory and antioxidant properties. In addition, considering the lack of existing research on naringenin's potential effectiveness and intracellular mechanisms of action in skin-related applications, especially as a cosmetic ingredient, this study aimed to explore naringenin's role in reducing the fundamental generation of reactive oxygen species. This was achieved by examining its inhibitory effects on the expression levels of NADPH oxidase and iNOS, ultimately leading to a reduction in NO production. This research examined the anti-inflammatory and antioxidant capacities of naringenin by employing a cellular senescence model of LPS-induced HDFs. The evaluation of naringenin's efficacy was validated through several investigative procedures, including the NF-κB luciferase assay, ELISA assay, and qRT-PCR. To verify the anti-inflammatory effectiveness of naringenin, we measured the responsive elements of NF-κB using a luciferase reporter assay. This assessment revealed that naringenin could decrease the concentration of genes activated by NF-κB. Moreover, we found that naringenin inhibited the transcriptional expression of known NF-κB-regulated inflammatory cytokines, including IL-1ß, IL-6, and IL-8. In addition, results from the qRT-PCR analysis indicated that naringenin facilitated a reduction in iNOS expression. Based on the data gathered and analyzed in this study, it can be conclusively inferred that naringenin possesses promising potential as a cosmetic ingredient, offering both anti-inflammatory and antioxidant benefits.
RESUMEN
Myocardial dysfunction is a prevalent complication of sepsis (septic cardiomyopathy) with a high mortality rate and limited therapeutic options. Naringenin, a natural flavonoid compound with anti-inflammatory and antioxidant properties, holds promise as a potential treatment for sepsis-induced myocardial dysfunction. This study investigated the pharmacological effects of naringenin on septic cardiomyopathy. In vivo and in vitro experiments demonstrated that naringenin improved cardiomyocyte damage. Network pharmacology and database analysis revealed that HIF-1α is a key target protein of naringenin. Elevated expression of HIF-1α was observed in damaged cardiomyocytes, and the HIF-1α inhibitor effectively protected against LPS-induced cardiomyocyte damage. Molecular docking studies confirmed the direct binding between naringenin and HIF-1α protein. Importantly, our findings demonstrated that naringenin did not provide additional attenuation of cardiomyocyte injury on the biases of HIF-1α inhibitor treatment. In conclusion, this study proves that naringenin protects against septic cardiomyopathy through HIF-1α signaling. Naringenin is a promising therapeutic candidate for treating septic cardiomyopathy.
Asunto(s)
Cardiomiopatías , Flavanonas , Sepsis , Animales , Ratones , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Subunidad alfa del Factor 1 Inducible por HipoxiaRESUMEN
Chronic myeloid leukemia (CML) treatment with Bcr-Abl tyrosine kinase inhibitors (TKIs) has significantly improved patient outcomes, yet challenges such as drug resistance and persistence of leukemic stem cells persist. This study explores the potential of naringenin, a natural flavonoid, to enhance the efficacy of Bcr-Abl TKIs in CML therapy. We showed that naringenin reduces viability of a panel of CML cell lines regardless of varying cellular origin and genetic mutations, and acts synergistically with dasatinib and ponatinib. Importantly, naringenin is effective in targeting blast crisis CML CD34+ cells by decreasing their colony formation, self-renewal and viability. Compared to CML, naringenin is significantly less effective against normal bone marrow (NBM) counterparts. In addition, naringenin significantly enhances the inhibitory effects of dasatinib in CML but not NBM CD34+ cells. Mechanism studies showed that naringenin's inhibitory effects were associated with the induction of oxidative stress and lipid damage, as evidenced by increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Notably, naringenin upregulated genes related to mitochondrial biogenesis while downregulating antioxidant defense genes. Pretreatment with α-tocopherol, which inhibits lipid-mediated ROS production, completely abolished the ROS increase and restored cell viability, indicating that lysosomal lipid peroxidation plays a crucial role in naringenin's mechanism of action. In a CML xenograft mouse model, the combination of naringenin and dasatinib resulted in remarkably more tumor growth suppression compared to single drug alone. Importantly, this combination was well-tolerated, with no adverse effects on body weight observed. These findings suggest that naringenin, by inducing oxidative lipid damage, enhances the anti-leukemic effects of Bcr-Abl TKIs, offering a promising therapeutic strategy for CML.
Asunto(s)
Flavanonas , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Estrés Oxidativo , Inhibidores de Proteínas Quinasas , Flavanonas/farmacología , Flavanonas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Humanos , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/genética , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Ratones , Dasatinib/farmacología , Dasatinib/uso terapéutico , Sinergismo Farmacológico , Especies Reactivas de Oxígeno/metabolismo , Piridazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Supervivencia Celular/efectos de los fármacos , Imidazoles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
This study aims to explore the regulating effect and mechanism of naringenin (NGN) on the hepatic stellate cells (HSCs) apoptosis and its preventive effects on MASH fibrosis. C57BL/6 mice were subjected to either high-fat diet (HFD) plus carbon tetrachloride (CCl4) injection (HFD + CCl4) for 8 weeks to induce a MASH fibrosis model or bile duct ligation (BDL) to establish a liver fibrosis model, NGN was administered by gavage. LX2 cells were stimulated by oleic acid (OA) and lipopolysaccharide (LPS) (OA + LPS) to study the effects of NGN on activated hepatic stellate cell (HSC). Additionally, LO2 cells stimulated with OA + LPS were used to assess the protective effects of NGN on lipotoxicity of hepatocytes. Our in vivo results showed that NGN administration effectively inhibited mouse liver fibrosis in both of the MASH model and BDL model. The in vitro results indicate that NGN directly inhibited HSCs activation and promoted apoptosis of the activated HSCs, while it suppressed the apoptosis of LO2 cells induced by OA + LPS. The underlying mechanisms were mainly elucidated through the reduction of TAK1 phosphorylation, leading to the downregulation of p-JNK and p-ERK expression. This in turn, inhibited the phosphorylation of FoxO3a and promoted the nuclear localization of FoxO3a. Consequently, this may enhance the transcription of apoptosis-related genes, resulting in the apoptosis of activated HSCs. In conclusion, NGN ameliorates MASH fibrosis by enhancing apoptosis of the activated HSCs. The inhibitory effects of NGN on the TAK1/MAPK/FoxO3a pathway were demonstrated as its preventive mechanisms against MASH fibrosis.
Asunto(s)
Apoptosis , Flavanonas , Proteína Forkhead Box O3 , Células Estrelladas Hepáticas , Cirrosis Hepática , Quinasas Quinasa Quinasa PAM , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Tetracloruro de Carbono , Línea Celular , Flavanonas/farmacología , Flavanonas/uso terapéutico , Proteína Forkhead Box O3/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Cirrosis Hepática/inducido químicamente , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS: Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION: Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.
Asunto(s)
Flavanonas , Hesperidina , Mieloma Múltiple , Ratones , Animales , Humanos , Hesperidina/farmacología , Dinámicas Mitocondriales , Mieloma Múltiple/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Ratones Endogámicos NOD , Ratones SCID , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavanonas/químicaRESUMEN
Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.
Asunto(s)
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Plásmidos/genética , Ingeniería Metabólica , Biotecnología , Proteínas Recombinantes/genéticaRESUMEN
Naringenin (NAR) has shown potential as a cancer treatment, reducing cell proliferation and invasion in soft tissue sarcomas like liposarcoma (LPS). This study investigates NAR's role and molecular mechanism. Bioinformatic analysis was performed to assess the expression level of genes in LPS based on the GEO dataset. The heat map and PPI of genes were also analyzed. MTT, wound healing, DAPI staining, and flow cytometry evaluated the cell viability, migration, and apoptosis. Besides, real-time PCR was used to measure the NAR's impact on the expression levels of EMT, apoptosis, inflammation, and metastasis-related genes. The results showed that NAR reduces cell viability, proliferation, and migration but induces apoptosis in LPS cells. RT-PCR results revealed that NAR is capable of regulating the expression level of the apoptosis, EMT, migration, and Inflammation-related genes. This study demonstrated that NAR may play a crucial role in reducing cell viability, inducing apoptosis, and attenuating migration in Sw872 LPS cells. Consequently, NAR might be a promising and efficient factor in the treatment of LPS.
Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Biología Computacional , Flavanonas , Liposarcoma , Flavanonas/farmacología , Liposarcoma/tratamiento farmacológico , Liposarcoma/patología , Liposarcoma/genética , Liposarcoma/metabolismo , Humanos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacosRESUMEN
Coronavirus Disease 2019 (COVID-19) has become a global pandemic in 2020 with high patient mortality due to acute respiratory distress syndrome which is possibly induced by a Cytokine release syndrome and more specifically through an interleukin-6 (IL-6) booster. Currently, IL-6/IL-6R inhibitors indicated an effective function in reducing the inflammatory markers in severe COVID-19 patients. In this comprehensively narrative review, we searched online academic databases including (Google Scholar, Web of Science, and Pub Med), the relevant literature was extracted from the databases by using search terms of COVID-19, IL-6, and IL6 inhibitor as free-text words and also with the combination with OR/AND to summarise the latest discoveries on the inhibitors of IL-6 and its receptor's especially focussing on the role of natural product, Naringin (NAR) as a flavonoid found in citrus fruits, with considerable anti-inflammatory and antiviral properties in COVID-19 treatments. Our data Therefore in comparison with other synthetic monoclonal antibodies NAR may provide a good qualification for the development of novel anti-inflammatory agents, especially against Covid 19 based on recent studies.
Asunto(s)
COVID-19 , Humanos , Interleucina-6 , Anticuerpos Monoclonales/uso terapéutico , SARS-CoV-2 , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéuticoRESUMEN
BACKGROUND: Inflammation is intricately linked to the development of various diseases, such as diabetes, cardiovascular diseases, and cancer. Flavonoids, commonly found in plants, are known for their diverse health benefits, including antioxidant and anti-inflammatory properties. These compounds are categorized into different classes based on their chemical structure. structures. However, limited research has compared the effects of flavonoid aglycones and flavonoid glycosides. This study aims to assess the anti-inflammatory effects of naringenin and its glycosides (naringin and narirutin) in RAW264.7 macrophages. METHODS AND RESULTS: RAW264.7 cells were treated with naringenin, naringin, and narirutin, followed by stimulation with lipopolysaccharide. The levels of inflammatory mediators, including tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), nitric oxide (NO), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), were assessed. Additionally, the study examined nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation using western blot analysis. Among the compounds tested, narirutin exhibited the most potent anti-inflammatory effect against TNF-α, NO, and iNOS. Naringin and narirutin showed comparable inhibitory effects on IL-1ß and COX-2. Both naringin and narirutin suppressed the expression of pro-inflammatory mediators by targeting different levels of the NF-κB and MAPK pathways. Naringenin demonstrated the weakest anti-inflammatory effect, primarily inhibiting NF-κB and reducing the phosphorylation levels of p38. CONCLUSIONS: This study suggests that the presence of glycosides on naringenin and the varied binding forms of sugars in naringenin glycosides significantly influence the anti-inflammatory effects compared with naringenin in RAW 264.7 macrophages.
Asunto(s)
Glicósidos , Lipopolisacáridos , Humanos , Glicósidos/farmacología , Lipopolisacáridos/farmacología , Ciclooxigenasa 2 , FN-kappa B , Factor de Necrosis Tumoral alfa , Flavonoides , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Macrófagos , Mediadores de Inflamación , Antiinflamatorios/farmacologíaRESUMEN
Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.
Asunto(s)
Cloruro de Aluminio , Flavanonas , Trastornos de la Memoria , Estrés Oxidativo , Animales , Flavanonas/farmacología , Flavanonas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Ratones , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Cloruro de Aluminio/toxicidad , Masculino , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéuticoRESUMEN
The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: â¢The compound I is proposed as the starting point for the rational design of the P450BM3 â¢"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin â¢Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.
Asunto(s)
Citrus , Flavanonas , Hidroxilación , FlavonoidesRESUMEN
Naringenin is a plant polyphenol, widely explored due to its interesting biological activities, namely anticancer, antioxidant, and anti-inflammatory. Due to its potential applications and attempt to overcome the industrial demand, there has been an increased interest in its heterologous production. The microbial biosynthetic pathway to produce naringenin is composed of tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). Herein, we targeted the efficient de novo production of naringenin in Escherichia coli by performing a step-by-step validation and optimization of the pathway. For that purpose, we first started by expressing two TAL genes from different sources in three different E. coli strains. The highest p-coumaric acid production (2.54 g/L) was obtained in the tyrosine-overproducing M-PAR-121 strain carrying TAL from Flavobacterium johnsoniae (FjTAL). Afterwards, this platform strain was used to express different combinations of 4CL and CHS genes from different sources. The highest naringenin chalcone production (560.2 mg/L) was achieved by expressing FjTAL combined with 4CL from Arabidopsis thaliana (At4CL) and CHS from Cucurbita maxima (CmCHS). Finally, different CHIs were tested and validated, and 765.9 mg/L of naringenin was produced by expressing CHI from Medicago sativa (MsCHI) combined with the other previously chosen genes. To our knowledge, this titer corresponds to the highest de novo production of naringenin reported so far in E. coli. KEY POINTS: ⢠Best enzyme and strain combination were selected for de novo naringenin production. ⢠After genetic and operational optimizations, 765.9 mg/L of naringenin was produced. ⢠This de novo production is the highest reported so far in E. coli.
Asunto(s)
Aciltransferasas , Amoníaco-Liasas , Vías Biosintéticas , Coenzima A Ligasas , Escherichia coli , Flavanonas , Flavanonas/biosíntesis , Flavanonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vías Biosintéticas/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Ingeniería Metabólica/métodos , Ácidos Cumáricos/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Tirosina/metabolismoRESUMEN
Isoliquiritigenin formation is a key reaction during deoxyflavonoid biosynthesis, which is catalyzed by two enzymes, chalcone synthase (CHS) and reductase (CHR). The substrates for CHS are established. However, the substrate for CHR is unknown. In this study, an in vitro reaction was performed to confirm whether naringenin chalcone can be a substrate. Naringenin chalcone was used as a substrate during the CHR reaction. Analyzing the product revealed that isoliquiritigenin was produced from naringenin chalcone, indicating that naringenin chalcone is a substrate. This study is the first to identify a substrate for CHR, reveals that deoxyflavonoid biosynthesis diverges from naringenin chalcone, endorses the term "chalcone reductase," and answers the long-standing questions about doubly-labeled acetic acid uptake pattern in deoxyflavonoid biosynthesis.
Asunto(s)
Chalcona , Chalconas , OxidorreductasasRESUMEN
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Asunto(s)
Neoplasias Colorrectales , Flavanonas , Proteína p53 Supresora de Tumor , Humanos , Regulación hacia Abajo , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Proliferación CelularRESUMEN
Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.
Asunto(s)
Neoplasias de la Mama , Flavanonas , Nanopartículas , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/patología , Pez Cebra/metabolismo , Receptores de Estrógenos/metabolismo , Estrógenos/metabolismo , Estrógenos/uso terapéutico , Tamoxifeno/farmacología , Estradiol/farmacología , Hígado/metabolismoRESUMEN
Our objectives were to explore the effect of naringenin addition in the semen extender on the post-thaw 1) sperm quality, 2) fertility-associated gene expression, and 3) fertilization potential of buffalo bull sperm. In experiment 1, semen samples (n = 32) from four Nili-Ravi buffalo bulls were pooled (n = 8) and diluted with the tris-citric acid (TCF-EY) extender containing different concentrations of naringenin, i.e., placebo (DMSO), 0 (control), 50, 100, 150 and 200 µM naringenin. After dilution, semen samples were packed in 0.5 mL French straws, cryopreserved and analyzed for post-thawed sperm quality and gene expression. Computer-assisted Semen Analysis, Hypo-osmotic Swelling test, Normal Apical Ridge assay, Rhodamine 123, Acridine orange, Propidium iodide staining and Thiobarbituric Acid Reactive Substances assay were performed to assess sperm motility parameters, plasma membrane functionality, acrosome integrity, mitochondrial membrane potential, DNA integrity, viability and lipid peroxidation, respectively. Expression levels of sperm acrosome-associated SPACA3, DNA condensation-related PRM1, anti-apoptotic BCL2, pro-apoptotic BAX, and oxidative stress-associated ROMO1 genes were evaluated through qPCR. Results revealed that total and progressive motility, plasma membrane functionality, acrosome integrity, mitochondrial membrane potential, DNA integrity and viability were higher (P < 0.05) with 50, 100 and 150 µM naringenin compared to 200 µM naringenin, placebo and control groups. Moreover, all naringenin-treated groups improved catalase activity, and reduced lipid peroxidation compared to placebo and control groups (P < 0.05). Relative expression levels of SPACA3 and PRM1 genes were higher (P < 0.05) with 150 µM naringenin compared to all groups except 100 µM (P > 0.05). No difference (P > 0.05) in the expression level of BCL2 gene was observed among all groups. Furthermore, BAX gene was expressed higher (P < 0.05) in the 200 µM naringenin group, whereas no difference (P > 0.05) in expression was noticed among the remaining groups. In addition, ROMO1 gene was expressed lower (P < 0.05) in all naringenin-treated groups compared to the control. In experiment 2, the in vivo fertility of semen doses (n = 400; 200/group) containing optimum concentration of naringenin (150 µM; depicted better in vitro sperm quality in experiment 1) was compared with control during the breeding season. Buffaloes were inseminated 24 h after the onset of natural estrus and palpated transrectal for pregnancy at least 60 days post-insemination. The fertility rate of 150 µM naringenin group was higher (P = 0.0366) compared to the control [57.00 ± 0.03 % (114/200) vs. 46.50 ± 0.04 % (93/200), respectively]. Taken together, it is concluded that naringenin supplementation in semen extender improves post-thaw quality, fertility-associated gene expression and fertilization potential of buffalo bull sperm, more apparently at 150 µM concentration.
Asunto(s)
Búfalos , Criopreservación , Flavanonas , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Flavanonas/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Motilidad Espermática/efectos de los fármacos , Crioprotectores/farmacología , Fertilidad/efectos de los fármacos , Análisis de Semen/veterinaria , Fertilización/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacosRESUMEN
INTRODUCTION: Citrus juice has been shown to cause QT prolongation in electrocardiograms of healthy volunteers, and naringenin, a major flavonoid found in citrus juice, has been identified as the potent inhibitor of human ether-a-go-go-related gene (HERG) channels as the cause of QT prolongation. Inhibition of HERG channels and prolongation of QT interval by antipsychotic drugs such as haloperidol, chlorpromazine, and clozapine have also been shown. However, naringenin's effect on HERG channel function in conjunction with antipsychotic medications has not been investigated. METHODS: In the present study, we evaluated the effect of combining naringenin with antipsychotics on the function of HERG channels expressed in Xenopus oocytes. RESULTS: When 30 µ
RESUMEN
Intestinal metaplasia (IM) is a premalignant condition that increases the risk for subsequent gastric cancer (GC). Traditional Chinese medicine generally plays a role in the treatment of IM, and the phytochemical naringenin used in Chinese herbal medicine has shown therapeutic potential for the treatment of gastric diseases. However, naringenin's specific effect on IM is not yet clearly understood. Therefore, this study identified potential gene targets for the treatment of IM through bioinformatics analysis and experiment validation. Two genes (MTTP and APOB) were selected as potential targets after a comparison of RNA-seq results of clinical samples, the GEO dataset (GSE78523), and naringenin-related genes from the GeneCards database. The results of both cell and animal experiments suggested that naringenin can improve the changes in the intestinal epithelial metaplasia model via MTTP/APOB expression. In summary, naringenin likely inhibits the MTTP/APOB axis and therefore inhibits IM progression. These results support the development of naringenin as an anti-IM agent and may contribute to the discovery of novel IM therapeutic targets.