Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.368
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636130

RESUMEN

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Asunto(s)
Resorción Ósea/patología , Osteoclastos/patología , Ligando RANK/metabolismo , Animales , Apoptosis , Resorción Ósea/metabolismo , Fusión Celular , Células Cultivadas , Humanos , Macrófagos/citología , Ratones , Osteocondrodisplasias/tratamiento farmacológico , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Osteoclastos/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 121(5): e2313656121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252822

RESUMEN

Long non-coding RNA (lncRNA) serves as a vital regulator of bone metabolism, but its role in pathologically overactive osteoclast differentiation remains elusive. Here, we identify lncRNA Dancr (Differentiation Antagonizing Non-protein Coding RNA) as a critical suppressor of osteoclastogenesis and bone resorption, which is down-regulated in response to estrogen deficiency. Global or osteoclast-specific Dancr Knockout mice display significant trabecular bone deterioration and enhanced osteoclast activity, but minimal alteration of bone formation. Moreover, the bone-targeted delivery of Dancr by Adeno-associated viral remarkably attenuates ovariectomy-induced osteopenia in mice. Mechanistically, Dancr establishes a direct interaction with Brahma-related gene 1 to prevent its binding and preserve H3K27me3 enrichment at the nuclear factor of activated T cells 1 and proliferator-activated receptor gamma coactivator 1-beta promoters, thereby maintaining appropriate expression of osteoclastic genes and metabolic programs during osteoclastogenesis. These results demonstrate that Dancr is a key molecule maintaining proper osteoclast differentiation and bone homeostasis under physiological conditions, and Dancr overexpression constitutes a potential strategy for treating osteoporosis.


Asunto(s)
Factores de Transcripción NFATC , Osteogénesis , ARN Largo no Codificante , Factores de Transcripción , Animales , Femenino , Ratones , Homeostasis , Ratones Noqueados , Factores de Transcripción NFATC/genética , Osteoclastos , Osteogénesis/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 121(8): e2316871121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346184

RESUMEN

Postmenopausal osteoporosis arises from imbalanced osteoclast and osteoblast activity, and mounting evidence suggests a role for the osteoimmune system in bone homeostasis. Bisphosphonate (BP) is an antiresorptive agent, but its treatment failure rate can be as high as 40%. Here, we performed single-cell RNA sequencing on peripheral immune cells from carefully selected postmenopausal women: non-osteoporotic, osteoporosis improved after BP treatment, and BP-failed cases. We found an increase in myeloid cells in patients with osteoporosis (specifically, T cell receptor+ macrophages). Furthermore, lymphoid lineage cells varied significantly, notably elevated natural killer cells (NKs) in the BP-failed group. Moreover, we provide fruitful lists of biomarkers within the immune cells that exhibit condition-dependent differences. The existence of osteoporotic- and BP-failure-specific cellular information flows was revealed by cell-cell interaction analysis. These findings deepen our insight of the osteoporosis pathology enhancing comprehension of the role of immune heterogeneity in postmenopausal osteoporosis and BP treatment failure.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Humanos , Femenino , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/genética , Densidad Ósea , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Perfilación de la Expresión Génica
4.
Am J Hum Genet ; 110(3): 442-459, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812914

RESUMEN

Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.


Asunto(s)
Epigénesis Genética , Atrofia Muscular Espinal , Femenino , Humanos , Masculino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas de Microfilamentos/genética , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética
5.
EMBO Rep ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271775

RESUMEN

Osteoclasts are bone resorbing cells that are essential to maintain skeletal integrity and function. While many of the growth factors and molecular signals that govern osteoclastogenesis are well studied, how the metabolome changes during osteoclastogenesis is unknown. Using a multifaceted approach, we identified a metabolomic signature of osteoclast differentiation consisting of increased amino acid and nucleotide metabolism. Maintenance of the osteoclast metabolic signature is governed by elevated glutaminolysis. Mechanistically, glutaminolysis provides amino acids and nucleotides which are essential for osteoclast differentiation and bone resorption in vitro. Genetic experiments in mice found that glutaminolysis is essential for osteoclastogenesis and bone resorption in vivo. Highlighting the therapeutic implications of these findings, inhibiting glutaminolysis using CB-839 prevented ovariectomy induced bone loss in mice. Collectively, our data provide strong genetic and pharmacological evidence that glutaminolysis is essential to regulate osteoclast metabolism, promote osteoclastogenesis and modulate bone resorption in mice.

6.
J Biol Chem ; 300(1): 105512, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042486

RESUMEN

Aging presents fundamental health concerns worldwide; however, mechanisms underlying how aging is regulated are not fully understood. Here, we show that cartilage regulates aging by controlling phosphate metabolism via ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). We newly established an Enpp1 reporter mouse, in which an EGFP-luciferase sequence was knocked-in at the Enpp1 gene start codon (Enpp1/EGFP-luciferase), enabling detection of Enpp1 expression in cartilage tissues of resultant mice. We then established a cartilage-specific Enpp1 conditional knockout mouse (Enpp1 cKO) by generating Enpp1 flox mice and crossing them with cartilage-specific type 2 collagen Cre mice. Relative to WT controls, Enpp1 cKO mice exhibited phenotypes resembling human aging, such as short life span, ectopic calcifications, and osteoporosis, as well as significantly lower serum pyrophosphate levels. We also observed significant weight loss and worsening of osteoporosis in Enpp1 cKO mice under phosphate overload conditions, similar to global Enpp1-deficient mice. Aging phenotypes seen in Enpp1 cKO mice under phosphate overload conditions were rescued by a low vitamin D diet, even under high phosphate conditions. These findings suggest overall that cartilage tissue plays an important role in regulating systemic aging via Enpp1.


Asunto(s)
Envejecimiento , Osteoporosis , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Humanos , Ratones , Envejecimiento/genética , Cartílago/metabolismo , Luciferasas , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
7.
Stem Cells ; 42(7): 623-635, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38393380

RESUMEN

Adipose-derived stem cells (ASCs) from diabetic osteoporosis (DOP) mice showed impaired osteogenic differentiation capacity. Recent studies have shown that in addition to antidiabetic drugs, sodium-glucose co-transporter inhibitor-2 (SGLT-2), empagliflozin, can play multipotent roles through various mechanisms of action. In this study, we aimed to investigate the effects and underlying mechanisms of empagliflozin on osteogenic differentiation of ASCs in DOP mice. Our results showed that osteogenic differentiation potential and autophagy activity weakened in DOP-ASCs when compared to controls. However, empagliflozin enhanced autophagy flux by promoting the formation of autophagosomes and acidification of autophagic lysosomes, resulting in an increase in LC3-II expression and a decrease in SQSTM1 expression. Furthermore, empagliflozin contributed to the reversal of osteogenesis inhibition in DOP-ASCs induced by a diabetic microenvironment. When 3-methyladenine was used to block autophagy activity, empagliflozin could not exert its protective effect on DOP-ASCs. Nonetheless, this study demonstrated that the advent of cellular autophagy attributed to the administration of empagliflozin could ameliorate the impaired osteogenic differentiation potential of ASCs in DOP mice. This finding might be conducive to the application of ASCs transplantation for promoting bone fracture healing and bone regeneration in patients with DOP.


Asunto(s)
Autofagia , Compuestos de Bencidrilo , Diferenciación Celular , Glucósidos , Osteogénesis , Osteoporosis , Animales , Glucósidos/farmacología , Autofagia/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Diferenciación Celular/efectos de los fármacos , Ratones , Osteoporosis/patología , Osteoporosis/tratamiento farmacológico , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/citología , Ratones Endogámicos C57BL , Masculino
8.
FASEB J ; 38(9): e23657, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713087

RESUMEN

The pathogenesis of osteoporosis (OP) is closely associated with the disrupted balance between osteogenesis and adipogenesis in bone marrow-derived mesenchymal stem cells (BMSCs). We analyzed published single-cell RNA sequencing (scRNA-seq) data to dissect the transcriptomic profiles of bone marrow-derived cells in OP, reviewing 56 377 cells across eight scRNA-seq datasets from femoral heads (osteoporosis or osteopenia n = 5, osteoarthritis n = 3). Seventeen genes, including carboxypeptidase M (CPM), were identified as key osteogenesis-adipogenesis regulators through comprehensive gene set enrichment, differential expression, regulon activity, and pseudotime analyses. In vitro, CPM knockdown reduced osteogenesis and promoted adipogenesis in BMSCs, while adenovirus-mediated CPM overexpression had the reverse effects. In vivo, intraosseous injection of CPM-overexpressing BMSCs mitigated bone loss in ovariectomized mice. Integrated scRNA-seq and bulk RNA sequencing analyses provided insight into the MAPK/ERK pathway's role in the CPM-mediated regulation of BMSC osteogenesis and adipogenesis; specifically, CPM overexpression enhanced MAPK/ERK signaling and osteogenesis. In contrast, the ERK1/2 inhibitor binimetinib negated the effects of CPM overexpression. Overall, our findings identify CPM as a pivotal regulator of BMSC differentiation, which provides new clues for the mechanistic study of OP.


Asunto(s)
Adipogénesis , Carboxipeptidasas , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , Osteogénesis , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , Carboxipeptidasas/metabolismo , Carboxipeptidasas/genética , Diferenciación Celular , Proteínas Ligadas a GPI , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metaloendopeptidasas , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Transcriptoma
9.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407813

RESUMEN

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Animales , Femenino , Ratones , beta Catenina/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteoblastos , ARN Interferente Pequeño , Vía de Señalización Wnt , Activador de Tejido Plasminógeno/metabolismo
10.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958998

RESUMEN

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Asunto(s)
Diferenciación Celular , MicroARNs , Osteoblastos , Osteogénesis , Osteoporosis Posmenopáusica , Estrés Mecánico , Animales , Femenino , Humanos , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/metabolismo , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/terapia , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/patología , Transducción de Señal
11.
FASEB J ; 38(19): e70074, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39340228

RESUMEN

Diabetes osteoporosis (DOP) is a chronic metabolic bone disease. This study aimed to identify potential biomarkers of DOP and explore their underlying mechanisms through bioinformatics methods and experimental verification. Bioinformatics methods were used to identify differentially expressed genes (DEGs) for DOP based on GEO data and the GeneCards database. GO and KEGG enrichment analyses were used to search the key pathways. The STRING website was used to construct a protein-protein interaction (PPI) network and identify key genes. Then, 50 mg/mL glucose was used to interveneosteoblasts (OBs).CCK-8 and Alizarin Red staining were used to investigate the proliferation and differentiation changes in OBs. Flowcytometry was used to investigate apoptosis. The membrane protein chip, WB, and RT-PCR were used to verify the expression of key targets or pathways about DOP. Forty-two common genes were screened between DOP-related targets and DEGs. GO and KEGG enrichment analysis showed that DOP was mainly associated with cytokine-cytokine receptor interactions, and apoptosis. PPI network analysis showed that TNF, IL1A, IL6, IL1B, IL2RA, Fas ligand (FASLG), and Fas cell surface death receptor (FAS) were key up-regulated genes in the occurrence of DOP. The experiment results show that 50 mg/mL glucose significantly inhibited OBs proliferation but presented an increase in apoptosis. Membrane protein chip, WB, and RT-PCR-verified a significantly active in the expression of TNF/FASLG/FAS pathway. High glucose activated the TNF-α/FAS/FASLG pathway and induced the inflammatory microenvironment and apoptosis, then impaired osteogenic differentiation of OBs. These may be an important mechanism for the occurrence and development of DOP.


Asunto(s)
Apoptosis , Biología Computacional , Inflamación , Osteoporosis , Mapas de Interacción de Proteínas , Osteoporosis/genética , Osteoporosis/patología , Osteoporosis/metabolismo , Biología Computacional/métodos , Inflamación/metabolismo , Inflamación/genética , Humanos , Osteoblastos/metabolismo , Animales , Diferenciación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Proliferación Celular , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo
12.
FASEB J ; 38(17): e70031, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39206513

RESUMEN

The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/ß-catenin, BMP, TGF-ß, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.


Asunto(s)
Desarrollo Óseo , Cartílago , Homeostasis , Transducción de Señal , Humanos , Animales , Cartílago/metabolismo , Homeostasis/fisiología , Desarrollo Óseo/fisiología , Somatomedinas/metabolismo , Huesos/metabolismo
13.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38216525

RESUMEN

Observational studies have reported that osteoporosis is associated with cortical changes in the brain. However, the inherent limitations of observational studies pose challenges in eliminating confounding factors and establishing causal relationships. And previous observational studies have not reported changes in specific brain regions. By employing Mendelian randomization, we have been able to infer a causal relationship between osteoporosis and a reduction in the surficial area (SA) of the brain cortical. This effect is partially mediated by vascular calcification. We found that osteoporosis significantly decreased the SA of global brain cortical (ß = -1587.62 mm2, 95%CI: -2645.94 mm2 to -529.32 mm2, P = 0.003) as well as the paracentral gyrus without global weighted (ß = - 19.42 mm2, 95%CI: -28.90 mm2 to -9.95 mm2, P = 5.85 × 10-5). Furthermore, we estimated that 42.25% and 47.21% of the aforementioned effects are mediated through vascular calcification, respectively. Osteoporosis leads to a reduction in the SA of the brain cortical, suggesting the presence of the bone-brain axis. Vascular calcification plays a role in mediating this process to a certain extent. These findings establish a theoretical foundation for further investigations into the intricate interplay between bone, blood vessels, and the brain.


Asunto(s)
Osteoporosis , Calcificación Vascular , Humanos , Análisis de la Aleatorización Mendeliana , Encéfalo/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
14.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38216542

RESUMEN

The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (ß = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (ß = -0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain-bone interaction.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Encéfalo , Nonoxinol , Radiofármacos , Estudio de Asociación del Genoma Completo
15.
Mol Ther ; 32(9): 3080-3100, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937970

RESUMEN

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.


Asunto(s)
Pérdida de Hueso Alveolar , Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Osteoporosis , Animales , Ratones , Humanos , Terapia Genética/métodos , Osteoporosis/terapia , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/etiología , Dependovirus/genética , Pérdida de Hueso Alveolar/terapia , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/genética , Pérdida de Hueso Alveolar/metabolismo , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , MicroARNs/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Femenino , Osteoblastos/metabolismo , Vía de Señalización Wnt
16.
Mol Ther ; 32(4): 1158-1177, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38332583

RESUMEN

Osteoclast precursors (OCPs) are thought to commit to osteoclast differentiation, which is accelerated by aging-related chronic inflammation, thereby leading to osteoporosis. However, whether the fate of OCPs can be reshaped to transition into other cell lineages is unknown. Here, we showed that M2 macrophage-derived extracellular vesicles (M2-EVs) could reprogram OCPs to downregulate osteoclast-specific gene expression and convert OCPs to M2 macrophage-like lineage cells, which reshaped the fate of OCPs by delivering the molecular metabolite glutamate. Upon delivery of glutamate, glutamine metabolism in OCPs was markedly enhanced, resulting in the increased production of α-ketoglutarate (αKG), which participates in Jmjd3-dependent epigenetic reprogramming, causing M2-like macrophage differentiation. Thus, we revealed a novel transformation of OCPs into M2-like macrophages via M2-EVs-initiated metabolic reprogramming and epigenetic modification. Our findings suggest that M2-EVs can reestablish the balance between osteoclasts and M2 macrophages, alleviate the symptoms of bone loss, and constitute a new approach for bone-targeted therapy to treat osteoporosis.


Asunto(s)
Vesículas Extracelulares , Osteoporosis , Humanos , Osteoclastos/metabolismo , Ácido Glutámico/metabolismo , Macrófagos/metabolismo , Osteoporosis/genética , Osteoporosis/terapia , Osteoporosis/metabolismo
17.
Mol Cell ; 68(4): 645-658.e5, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149593

RESUMEN

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Síndrome de Hajdu-Cheney , Mutación , Osteoporosis , Proteolisis , Receptor Notch2 , Animales , Línea Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Ratones Noqueados , Osteoporosis/genética , Osteoporosis/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Ubiquitinación/genética
18.
Cell Mol Life Sci ; 81(1): 423, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367914

RESUMEN

Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic ß-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4+ T cells into Treg subsets, facilitating Ca2+ influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca2+ entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 2 , Osteoporosis , Linfocitos T Reguladores , Vitamina D , Animales , Masculino , Ratones , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Glucolípidos/farmacología , Glucolípidos/uso terapéutico , Ratones Endogámicos C57BL , Proteína ORAI1/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Molécula de Interacción Estromal 1/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/inmunología , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D/uso terapéutico
19.
Cell Mol Life Sci ; 81(1): 260, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878096

RESUMEN

The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchymal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expression was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and mineralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of ß-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.


Asunto(s)
Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Vía de Señalización Wnt , beta Catenina , Animales , Masculino , Ratones , Adipogénesis/genética , beta Catenina/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Osteogénesis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Factor 1 de Elongación Peptídica/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo
20.
Cell Mol Life Sci ; 81(1): 360, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158700

RESUMEN

Iron deficiency is a prevalent nutritional deficit associated with organ damage and dysfunction. Recent research increasingly associates iron deficiency with bone metabolism dysfunction, although the precise underlying mechanisms remain unclear. Some studies have proposed that iron-dependent methylation-erasing enzyme activity regulates cell proliferation and differentiation under physiological or pathological conditions. However, it remains uncertain whether iron deficiency inhibits the activation of quiescent mesenchymal stem cells (MSCs) by affecting histone demethylase activity. In our study, we identified KDM4D as a key player in the activation of quiescent MSCs. Under conditions of iron deficiency, the H3K9me3 demethylase activity of KDM4D significantly decreased. This alteration resulted in increased heterochromatin with H3K9me3 near the PIK3R3 promoter, suppressing PIK3R3 expression and subsequently inhibiting the activation of quiescent MSCs via the PI3K-Akt-Foxo1 pathway. Iron-deficient mice displayed significantly impaired bone marrow MSCs activation and decreased bone mass compared to normal mice. Modulating the PI3K-Akt-Foxo1 pathway could reverse iron deficiency-induced bone loss.


Asunto(s)
Proteína Forkhead Box O1 , Hierro , Histona Demetilasas con Dominio de Jumonji , Células Madre Mesenquimatosas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Hierro/metabolismo , Ratones Endogámicos C57BL , Proliferación Celular , Diferenciación Celular , Masculino , Deficiencias de Hierro , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA