Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 325(1): H30-H53, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37145958

RESUMEN

The growing number of people who identify themselves as transgender has gained increased attention in recent years and will certainly impact personalized clinical practices and healthcare worldwide. Transgender and gender-nonconforming individuals frequently undergo gender-affirming hormone therapy (GAHT), i.e., they use sex hormones to align their gender identity with their biological characteristics. Testosterone is the main compound used in GAHT by transmasculine people, leading to the development of male secondary sexual characteristics in these individuals. However, sex hormones, testosterone included, also influence hemodynamic homeostasis, blood pressure, and cardiovascular performance by direct effects in the heart and blood vessels, and by modulating several mechanisms that control cardiovascular function. In pathological conditions and when used in supraphysiological concentrations, testosterone is associated with harmful cardiovascular effects, requiring close attention in its clinical use. The present review summarizes current knowledge on the cardiovascular impact of testosterone in biological females, focusing on aspects of testosterone use by transmasculine people (clinical goals, pharmaceutical formulations, and impact on the cardiovascular system). Potential mechanisms whereby testosterone may increase cardiovascular risk in these individuals are discussed, and the influence of testosterone on the main mechanisms that control blood pressure and that potentially lead to hypertension development and target-organ damage are also reviewed. In addition, current experimental models, which are key to reveal testosterone mechanistic aspects and potential markers of cardiovascular injury, are reviewed. Finally, research limitations and the lack of data on cardiovascular health of transmasculine individuals are considered, and future directions for more appropriate clinical practices are highlighted.


Asunto(s)
Sistema Cardiovascular , Personas Transgénero , Humanos , Masculino , Femenino , Testosterona/efectos adversos , Identidad de Género , Hormonas Esteroides Gonadales
2.
J Biochem Mol Toxicol ; 37(9): e23419, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37341014

RESUMEN

In the context of diabetes mellitus (DM), the circulating cathepsin S (CTSS) level is significantly higher in the cardiovascular disease group. Therefore, this study was designed to investigate the role of CTSS in restenosis following carotid injury in diabetic rats. To induce DM, 60 mg/kg of streptozotocin (STZ) in citrate buffer was injected intraperitoneally into Sprague-Dawley rats. After successful modeling of DM, wire injury of the rat carotid artery was performed, followed by adenovirus transduction. Levels of blood glucose and Th17 cell surface antigens including ROR-γt, IL-17A, IL-17F, IL-22, and IL-23 in perivascular adipose tissues (PVAT) were evaluated. For in vitro analysis, human dendritic cells (DCs) were treated with 5.6-25 mM glucose for 24 h. The morphology of DCs was observed using an optical microscope. CD4+ T cells derived from human peripheral blood mononuclear cells were cocultured with DCs for 5 days. Levels of IL-6, CTSS, ROR-γt, IL-17A, IL-17F, IL-22 and IL-23 were measured. Flow cytometry was conducted to detect DC surface biomarkers (CD1a, CD83, and CD86) and Th17 cell differentiation. The collected DCs presented a treelike shape and were positive for CD1a, CD83, and CD86. Glucose impaired DC viability at the dose of 35 mM. Glucose treatment led to an increase in CTSS and IL-6 expression in DCs. Glucose-treated DCs promoted the differentiation of Th17 cells. CTSS depletion downregulated IL-6 expression and inhibited Th17 cell differentiation in vitro and in vivo. CTSS inhibition in DCs inhibits Th17 cell differentiation in PVAT tissues from diabetic rats following vascular injury.


Asunto(s)
Diabetes Mellitus Experimental , Lesiones del Sistema Vascular , Ratas , Humanos , Animales , Interleucina-17 , Células Th17/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lesiones del Sistema Vascular/metabolismo , Ratas Sprague-Dawley , Diferenciación Celular , Células Dendríticas/metabolismo , Interleucina-23/metabolismo , Glucosa/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 322(6): H1003-H1013, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275760

RESUMEN

Perivascular adipose tissue (PVAT) is increasingly recognized as an essential layer of the functional vasculature, being responsible for producing vasoactive substances and assisting arterial stress relaxation. Here, we test the hypothesis that PVAT reduces aortic stiffness. Our model was the thoracic aorta of the male Sprague-Dawley rat. Uniaxial mechanical tests for three groups of tissue were performed: aorta with PVAT attached (+PVAT) or removed (-PVAT), and isolated PVAT (PVAT only). The output of the mechanical test is reported in the form of a Cauchy stress-stretch curve. This work presents a novel, physiologically relevant approach to measure mechanical stiffness ex vivo in isolated PVAT. Low-stress stiffness (E0), high-stress stiffness (E1), and the stress corresponding to a stretch of 1.2 (σ1.2) were measured as metrics of distensibility. The low-stress stiffness was largest in the -PVAT samples and smallest in PVAT only samples. Both the high-stress stiffness and the stress at 1.2 stretch were significantly higher in -PVAT samples when compared with +PVAT samples. Taken together, these results suggest that -PVAT samples are stiffer (less distensible) both at low stress (not significant) as well as at high stress (significant) when compared with +PVAT samples. These conclusions are supported by the results of the continuum mechanics material model that we also used to interpret the same experimental data. Thus, tissue stiffness is significantly lower when considering PVAT as part of the aortic wall. As such, PVAT should be considered as a target for improving vascular function in diseases with elevated aortic stiffness, including hypertension.NEW & NOTEWORTHY We introduce a novel and physiologically relevant way of measuring perivascular adipose tissue (PVAT) mechanical stiffness which shows that PVAT's low, yet measurable, stiffness is linearly correlated with the amount of collagen fibers present within the tissue. Including PVAT in the measurement of the aortic wall's mechanical behavior is important, and it significantly affects the resulting metrics by decreasing aortic stiffness.


Asunto(s)
Rigidez Vascular , Tejido Adiposo/fisiología , Animales , Aorta , Aorta Torácica/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
4.
Nitric Oxide ; 127: 18-25, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839994

RESUMEN

Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in the body after NO and CO and plays an important organismal protective role in various diseases. Within adipose tissue, related catalytic enzymes (cystathionine-ß-synthetase, cystathionine-γ-lyase, and 3-mercaptopyruvate transsulfuration enzyme) can produce and release endogenous H2S. Atherosclerosis (As) is a pathological change in arterial vessels that is closely related to abnormal glucose and lipid metabolism and a chronic inflammatory response. Previous studies have shown that H2S can act on the cardiovascular system, exerting effects such as improving disorders of glycolipid metabolism, alleviating insulin resistance, protecting the function of vascular endothelial cells, inhibiting vascular smooth muscle cell proliferation and migration, regulating vascular tone, inhibiting the inflammatory response, and antagonizing the occurrence and development of As.


Asunto(s)
Aterosclerosis , Sulfuro de Hidrógeno , Tejido Adiposo/metabolismo , Aterosclerosis/patología , Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología
5.
Pharmacol Res ; 175: 105995, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818570

RESUMEN

The vasculature constantly experiences distension/pressure exerted by blood flow and responds to maintain homeostasis. We hypothesized that activation of the stretch sensitive, non-selective cation channel Piezo1 would directly increase vascular contraction in a way that might be modified by perivascular adipose tissue (PVAT). The presence and function of Piezo1 was investigated by RT-PCR, immunohistochemistry, and isolated tissue bath contractility. Superior and mesenteric resistance arteries, aortae, and their PVATs from male Sprague Dawley rats were used. Piezo1 mRNA was detected in aortic vessels, aortic PVAT, mesenteric vessels, and mesenteric PVAT. Both adipocytes and stromal vascular fraction of mesenteric PVAT expressed Piezo1 mRNA. In PVAT, expression of Piezo1 mRNA was greater in magnitude than that of Piezo2, transient receptor potential cation channel, subfamily V, member 4 (TRPV4), anoctamin 1, calcium activated chloride channel (TMEM16), and Pannexin1 (Panx1). Piezo1 protein was present in endothelium and PVAT of rat aortic and in PVAT of mesenteric artery. The Piezo1 agonists Yoda1 and Jedi2 (1 nM - 10 µM) did not stimulate aortic contraction [max < 10% phenylephrine (PE) 10 µM contraction] or relaxation in tissues + or -PVAT. Depolarizing the aorta by modestly elevated extracellular K+ did not unmask aortic contraction to Yoda1 (max <10% PE 10 µM contraction). Finally, the Piezo1 antagonist Dooku1 did not modify PE-induced aorta contraction + or -PVAT. Surprisingly, Dooku1 directly caused aortic contraction in the absence (Dooku1 =26 ± 11; Vehicle = 11 ± 11%PE contraction) but not in the presence of PVAT (Dooku1 = 2 ± 1; Vehicle = 8 ± 5% PE contraction). Thus, Piezo1 is present and functional in the isolated rat aorta but does not serve direct vascular contraction with or without PVAT. We reaffirmed the isolated mouse aorta relaxation to Yoda1, indicating a species difference in Piezo1 activity between mouse and rat.


Asunto(s)
Aorta Torácica/fisiología , Proteínas de la Membrana/fisiología , Arterias Mesentéricas/fisiología , Tejido Adiposo/fisiología , Animales , Aorta Torácica/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Arterias Mesentéricas/metabolismo , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Vasoconstricción
6.
Pharmacol Res ; 180: 106231, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35462011

RESUMEN

Several studies demonstrate the beneficial effects of dietary flavonoids on the cardiovascular system. Since perivascular adipose tissue (PVAT) plays an active role in the regulation of vascular tone in both health and diseases, the present study aimed to assess the functional interaction between PVAT and flavonoids in vitro on rat aorta rings. Several flavonoids proved to display both antispasmodic and spasmolytic activities towards noradrenaline-induced contraction of rings deprived of PVAT (-PVAT). However, on PVAT-intact (+PVAT) rings, both actions of some flavonoids were lost and/or much decreased. In rings-PVAT, the superoxide donor pyrogallol mimicked the effect of PVAT, while in rings+PVAT the antioxidant mito-tempol restored both activities of the two most representative flavonoids, namely apigenin and chrysin. The Rho-kinase inhibitor fasudil, or apigenin and chrysin concentration-dependently relaxed the vessel active tone induced by the Rho-kinase activator NaF; the presence of PVAT counteracted apigenin spasmolytic activity, though only in the absence of mito-tempol. Similar results were obtained in rings pre-contracted by phenylephrine. Finally, when ß3 receptors were blocked by SR59230A, vasorelaxation caused by both flavonoids was unaffected by PVAT. These data are consistent with the hypothesis that both noradrenaline and apigenin activated adipocyte ß3 receptors with the ensuing release of mitochondrial superoxide anion, which once diffused toward myocytes, counteracted flavonoid vasorelaxant activity. This phenomenon might limit the beneficial health effects of dietary flavonoids in patients affected by either obesity and/or other pathological conditions characterized by sympathetic nerve overactivity.


Asunto(s)
Superóxidos , Quinasas Asociadas a rho , Tejido Adiposo , Animales , Aorta , Apigenina , Flavonoides/farmacología , Humanos , Norepinefrina/farmacología , Parasimpatolíticos , Ratas
7.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232489

RESUMEN

We aimed to investigate the efficacy of exercise on preventing arterial stiffness and the potential role of sympathetic nerves within perivascular adipose tissue (PVAT) in pressure-overload-induced heart failure (HF) mice. Eight-week-old male mice were subjected to sham operation (SHAM), transverse aortic constriction-sedentary (TAC-SE), and transverse aortic constriction-exercise (TAC-EX) groups. Six weeks of aerobic exercise training was performed using a treadmill. Arterial stiffness was determined by measuring the elastic modulus. The elastic and collagen fibers of the aorta and sympathetic nerve distribution in PVAT were observed. Circulating noradrenaline (NE), expressions of ß3-adrenergic receptor (ß3-AR), and adiponectin in PVAT were quantified. During the recovery of cardiac function by aerobic exercise, thoracic aortic collagen elastic modulus (CEM) and collagen fibers were significantly decreased (p < 0.05, TAC-SE vs. TAC-EX), and elastin elastic modulus (EEM) was significantly increased (p < 0.05, TAC-SE vs. TAC-EX). Circulating NE and sympathetic nerve distribution in PVAT were significantly decreased (p < 0.05, TAC-SE vs. TAC-EX). The expression of ß3-AR was significantly reduced (p < 0.05, TAC-SE vs. TAC-EX), and adiponectin was significantly increased (p < 0.05, TAC-SE vs. TAC-EX) in PVAT. Regular aerobic exercise can effectively prevent arterial stiffness and extracellular matrix (ECM) remodeling in the developmental course of HF, during which sympathetic innervation and adiponectin within PVAT might be strongly implicated.


Asunto(s)
Insuficiencia Cardíaca , Condicionamiento Físico Animal , Sistema Nervioso Simpático , Rigidez Vascular , Animales , Masculino , Ratones , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Constricción , Elastina/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Sistema Nervioso Simpático/fisiología
8.
Am J Physiol Heart Circ Physiol ; 321(1): H15-H28, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929898

RESUMEN

Vascular dysfunctions are observed in the arteries from hypertensive subjects. The establishment of the Dahl salt-sensitive (SS) male and female rat models to develop a reproducible hypertension with high-fat (HF) diet feeding from weaning allows addressing the question of whether HF diet-associated hypertension results in vascular dysfunction similar to that of essential hypertension in both sexes. We hypothesized that dysfunction of three distinct vascular layers, i.e., endothelial, smooth muscle, and perivascular adipose tissue (PVAT), would be present in the aorta from HF diet-fed versus control diet-fed male and female rats. Dahl SS rats were fed a control (10% kcal of fat) or HF (60%) diet from weaning for 24 wk. Male and female Dahl SS rats became equally hypertensive when placed on a HF diet. For male and female rats, the thoracic aorta exhibited medial hypertrophy in HF diet-induced hypertension versus control, but neither displayed a hyperresponsive contraction to the α-adrenergic agonist phenylephrine nor an endothelial cell dysfunction as measured by acetylcholine-induced relaxation. A beneficial PVAT function, support of stress relaxation, was reduced in the male versus female rats fed a HF diet. PVAT in the aorta of males but not in females retained the anticontractile activity. We conclude that this HF model does not display the same vascular dysfunctions observed in essential hypertension. Moreover, both male and female show significantly different vascular dysfunctions in this HF feeding model.NEW & NOTEWORTHY Although the aorta exhibits medial hypertrophy in response to HF diet-induced hypertension, it did not exhibit hyperresponsive contraction to an α-adrenergic agonist nor endothelial cell dysfunction; this was true for both sexes. Unlike other hypertension models, PVAT around aorta from (male) rats on the HF diet retained significant anticontractile activity. PVAT around aorta of the male on a HF diet was modestly more fibrotic and lost the ability to assist in arterial stress relaxation.


Asunto(s)
Tejido Adiposo/metabolismo , Aorta Torácica/fisiología , Dieta Alta en Grasa , Vasodilatación/fisiología , Acetilcolina/farmacología , Tejido Adiposo/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Femenino , Masculino , Ratas , Ratas Endogámicas Dahl , Factores Sexuales , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos
9.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R960-R971, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881363

RESUMEN

The liver plays a central role that influences cardiovascular disease outcomes through regulation of glucose and lipid metabolism. It is recognized that the local liver molecular clock regulates some liver-derived metabolites. However, it is unknown whether the liver clock may impact cardiovascular function. Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue surrounding blood vessels. Importantly, cross talk between the endothelium and PVAT via vasoactive factors is critical for vascular function. Therefore, we designed studies to test the hypothesis that cardiovascular function, including PVAT function, is impaired in mice with liver-specific circadian clock disruption. Bmal1 is a core circadian clock gene, thus studies were undertaken in male hepatocyte-specific Bmal1 knockout (HBK) mice and littermate controls (i.e., flox mice). HBK mice showed significantly elevated plasma levels of ß-hydroxybutyrate, nonesterified fatty acids/free fatty acids, triglycerides, and insulin-like growth factor 1 compared with flox mice. Thoracic aorta PVAT in HBK mice had increased mRNA expression of several key regulatory and metabolic genes, Ppargc1a, Pparg, Adipoq, Lpl, and Ucp1, suggesting altered PVAT energy metabolism and thermogenesis. Sensitivity to acetylcholine-induced vasorelaxation was significantly decreased in the aortae of HBK mice with PVAT attached compared with aortae of HBK mice with PVAT removed, however, aortic vasorelaxation in flox mice showed no differences with or without attached PVAT. HBK mice had a significantly lower systolic blood pressure during the inactive period of the day. These new findings establish a novel role of the liver circadian clock in regulating PVAT metabolic gene expression and PVAT-mediated aortic vascular function.


Asunto(s)
Tejido Adiposo/metabolismo , Relojes Circadianos/fisiología , Hepatocitos/metabolismo , Hígado/fisiología , Animales , Presión Sanguínea/fisiología , Expresión Génica/fisiología , Hígado/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
10.
Cell Mol Neurobiol ; 41(7): 1589-1598, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32734322

RESUMEN

Melatonin is released by the pineal gland and can modulate cardiovascular system function via the G protein-coupled melatonin receptors MT1 and MT2. Most vessels are surrounded by perivascular adipose tissue (PVAT), which affects their contractility. The aim of our study was to evaluate mRNA and protein expression of MT1 and MT2 in the mesenteric artery (MA) and associated PVAT of male rats by RT-PCR and Western blot. Receptor localization was further studied by immunofluorescence microscopy. Effects of melatonin on neurogenic contractions were explored in isolated superior MA ex vivo by measurement of isometric contractile tension. MT1, but not MT2, was present in MA, and MT1 was localized mainly in vascular smooth muscle. Moreover, we proved the presence of MT1, but not MT2 receptors, in MA-associated PVAT. In isolated superior MA with intact PVAT, neuro-adrenergic contractile responses were significantly smaller when compared to arteries with removed PVAT. Pre-treatment with melatonin of PVAT-stripped arterial rings enhanced neurogenic contractions, while the potentiating effect of melatonin was not detected in preparations with preserved PVAT. We hypothesize that melatonin can stimulate the release of PVAT-derived relaxing factor(s) via MT1, which can override the direct pro-contractile effect of melatonin on vascular smooth muscle. Our results suggest that melatonin is involved in the control of vascular tone in a complex way, which is vessel specific and can reflect a sum of action on different layers of the vessel wall and surrounding PVAT.


Asunto(s)
Melatonina/farmacología , Arterias Mesentéricas/metabolismo , Receptores de Melatonina/efectos de los fármacos , Receptores de Melatonina/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/fisiología , Animales , Melatonina/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Ratas Wistar
11.
Pharmacol Res ; 163: 105273, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197599

RESUMEN

Trimethylamine (TMA), formed by intestinal microbiota, and its Flavin-Monooxygenase 3 (FMO3) product Trimethylamine-N-Oxide (TMAO), are potential modulators of host cardiometabolic phenotypes. High circulating levels of TMAO are associated with increased risk for cardiovascular diseases. We hypothesized that TMA/TMAO could directly change the vascular tone. Perivascular adipose tissue (PVAT) helps to regulate vascular homeostasis and may also possess FMO3. Thoracic aorta with(+) or without(-) PVAT, also + or - the endothelium (E), of male Sprague Dawley rats were isolated for measurement of isometric tone in response to TMA/TMAO (1nM-0.5 M). Immunohistochemistry (IHC) studies were done to identify the presence of FMO3. TMA and TMAO elicited concentration-dependent arterial contraction. However, at a maximally achievable concentration (0.2 M), contraction stimulated by TMA was of a greater magnitude (141.5 ± 16% of maximum phenylephrine contraction) than that elicited by TMAO (19.1 ± 4.03%) with PVAT and endothelium intact. When PVAT was preserved, TMAO-induced contraction was extensively reduced the presence (19.1 ± 4.03%) versus absence of E (147.2 ± 20.5%), indicating that the endothelium plays a protective role against TMAO-induced contraction. FMO3 enzyme was present in aortic PVAT, but the FMO3 inhibitor methimazole did not affect contraction stimulated by TMA in aorta + PVAT. However, the l-type calcium channel blocker nifedipine reduced TMA-induced contraction by ∼50% compared to the vehicle. Though a high concentration of these compounds was needed to achieve contraction, the findings that TMA-induced contraction was independent of PVAT and E and mediated by nifedipine-sensitive calcium channels suggest metabolite-induced contraction may be physiologically important.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Aorta Torácica/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Metilaminas/farmacología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiología , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiología , Calcio/fisiología , Canales de Calcio Tipo L/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Oxigenasas/metabolismo , Oxigenasas/fisiología , Ratas Sprague-Dawley
12.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33808023

RESUMEN

Transglutaminases (TGs) are crosslinking enzymes best known for their vascular remodeling in hypertension. They require calcium to form an isopeptide bond, connecting a glutamine to a protein bound lysine residue or a free amine donor such as norepinephrine (NE) or serotonin (5-HT). We discovered that perivascular adipose tissue (PVAT) contains significant amounts of these amines, making PVAT an ideal model to test interactions of amines and TGs. We hypothesized that transglutaminases are active in PVAT. Real time RT-PCR determined that Sprague Dawley rat aortic, superior mesenteric artery (SMA), and mesenteric resistance vessel (MR) PVATs express TG2 and blood coagulation Factor-XIII (FXIII) mRNA. Consistent with this, immunohistochemical analyses support that these PVATs all express TG2 and FXIII protein. The activity of TG2 and FXIII was investigated in tissue sections using substrate peptides that label active TGs when in a catalyzing calcium solution. Both TG2 and FXIII were active in rat aortic PVAT, SMAPVAT, and MRPVAT. Western blot analysis determined that the known TG inhibitor cystamine reduced incorporation of experimentally added amine donor 5-(biotinamido)pentylamine (BAP) into MRPVAT. Finally, experimentally added NE competitively inhibited incorporation of BAP into MRPVAT adipocytes. Further studies to determine the identity of amidated proteins will give insight into how these enzymes contribute to functions of PVAT and, ultimately, blood pressure.


Asunto(s)
Adipocitos/enzimología , Tejido Adiposo/enzimología , Aorta/enzimología , Factor XIII/biosíntesis , Arteria Mesentérica Superior/enzimología , Transglutaminasas/biosíntesis , Animales , Masculino , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas , Ratas Sprague-Dawley
13.
Am J Physiol Heart Circ Physiol ; 319(6): H1313-H1324, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33006918

RESUMEN

Perivascular adipose tissue (PVAT) modifies the contractile function of the vessel it surrounds (outside-in signaling). Little work points to the vessel actively affecting its surrounding PVAT. We hypothesized that inside-out arterial signaling to PVAT would be evidenced by the response of PVAT to changes in tangential vascular wall stress. Rats coarcted in the mid-thoracic aorta created PVAT tissues that would exemplify pressure-dependent changes (above vs. below coarctation); a sham rat was used as a control. Radiotelemetry revealed a ∼20 mmHg systolic pressure gradient across the coarctation 4 wk after surgery. Four measures (histochemical, adipocyte progenitor proliferation and differentiation, isometric tone, and bulk mRNA sequencing) were used to compare PVAT above versus below the ligature in sham and coarcted rats. Neither aortic collagen deposition in PVAT nor arterial media/radius ratio above coarctation was increased versus below segments. However, differentiated adipocytes derived from PVAT above the coarctation accumulated substantially less triglycerides versus those below; their relative proliferation rate as adipogenic precursors was not different. Functionally, the ability of PVAT to assist stress relaxation of isolated aorta was reduced in rings above versus below the coarctation. Transcriptomic analyses revealed that the coarctation resulted in more differentially expressed genes (DEGs) between PVAT above versus below when compared with sham samples from the same locations. A majority of DEGs were in PVAT below the coarctation and were enriched in neuronal/synaptic terms. These findings provide initial evidence that signaling from the vascular wall, as stimulated by a pressure change, influences the function and transcriptional profile of its PVAT.NEW & NOTEWORTHY A mid-thoracic aorta coarcted rat was created to generate a stable pressure difference above versus below the coarctation ligature. This study determined that the PVAT around the thoracic aorta exposed to a higher pressure has a significantly reduced ability to assist stress relaxation versus that below the ligature and appears to retain the ability to be anticontractile. At the same time, the PVAT around the thoracic aorta exposed to higher pressure had a reduced adipogenic potential versus that below the ligature. Transcriptomics analyses indicated that PVAT below the coarctation showed the greatest number of DEGs with an increased profile of the synaptic neurotransmitter gene network.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Aorta Torácica/fisiopatología , Coartación Aórtica/fisiopatología , Presión Arterial , Mecanotransducción Celular , Transcriptoma , Adipocitos/patología , Adipogénesis , Tejido Adiposo/patología , Animales , Coartación Aórtica/genética , Coartación Aórtica/metabolismo , Coartación Aórtica/patología , Proliferación Celular , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Masculino , Ratas Sprague-Dawley
14.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887510

RESUMEN

Background: We previously reported that the adipokine chemerin, when added exogenously to the isolated rat mesenteric artery, amplified electrical field-stimulated (EFS) contraction. The Chemerin1 antagonist CCX832 alone inhibited EFS-induced contraction in tissues with but not without perivascular adipose tissue (PVAT). These data suggested indirectly that chemerin itself, presumably from the PVAT, facilitated EFS-induced contraction. We created the chemerin KO rat and now test the focused hypothesis that endogenous chemerin amplifies EFS-induced arterial contraction. Methods: The superior mesenteric artery +PVAT from global chemerin WT and KO female rats, with endothelium and sympathetic nerve intact, were mounted into isolated tissue baths for isometric and EFS-induced contraction. Results: CCX832 reduced EFS (2-20 Hz)-induced contraction in tissues from the WT but not KO rats. Consistent with this finding, the magnitude of EFS-induced contraction was lower in the tissues from the KO vs. WT rats, yet the maximum response to the adrenergic stimulus PE was not different among all tissues. Conclusion: These studies support that endogenous chemerin modifies sympathetic nerve-mediated contraction through Chemerin1, an important finding relative in understanding chemerin's role in control of blood pressure.


Asunto(s)
Tejido Adiposo/fisiología , Quimiocinas/fisiología , Estimulación Eléctrica , Arterias Mesentéricas/fisiología , Vasoconstricción , Animales , Animales Modificados Genéticamente , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
15.
Am J Physiol Heart Circ Physiol ; 317(5): H1142-H1156, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518161

RESUMEN

IL-18 is ubiquitously produced by both hematopoietic and non-hematopoietic cells. The present study examined the thoracic aorta, including the surrounding perivascular adipose tissue (PVAT), of IL-18KO mice from functional and histological perspectives. IL-18KO mice exhibited raised blood pressure compared with wild-type mice. Echocardiographic examination showed a thickened vascular wall and narrowed vascular diameter of the aorta. Examination by the Magnus test demonstrated dysfunction of endothelial cells (ECs) in the IL-18KO thoracic aorta and impairment of the anticontractile function of IL-18KO PVAT. Histological examination showed no inflammatory lesions in the aorta but indicated progressive fibrosis in the vessel and conversion of PVAT from brown adipose tissue-like features to white adipose tissue-like features. Electron microscopic observation suggested several deformed mitochondria in the aorta and vacuole-like structures in ECs from IL-18KO mice. In addition, activity of complex IV was lower and production of reactive oxygen species was augmented in the mitochondria of IL-18KO aorta. Although expression of LC3 B was higher, rapamycin-induced autophagy flux was impaired in the IL-18KO PVAT. Moreover, Western blot analysis revealed that LAMP 1/2 was increased in IL-18KO PVAT, and measurement of cathepsin-D activity indicated decreased levels in IL-18KO PVAT. The IL-18KO thoracic aorta thus showed defects in physiological functions related to histological alterations, and the inflammasome/IL-18 system was suggested to play a protective role in cardiovascular cells, probably through quality control of mitochondria via promotion of autophagosome/autophagolysosome formation.NEW & NOTEWORTHY IL-18 deficiency caused aortic abnormalities in terms of morphology and functions in parallel with an accumulation of damaged mitochondria and anomalous turnover of protein complexes, such as PGC-1 and LAMP1 and -2 in PVAT. These findings suggested that IL-18 plays roles in maintaining the homeostasis of vessels and PVAT around the aorta, possibly by promoting autophagy.


Asunto(s)
Tejido Adiposo/metabolismo , Aorta Torácica/metabolismo , Autofagia , Interleucina-18/deficiencia , Mitocondrias/metabolismo , Tejido Adiposo/fisiopatología , Tejido Adiposo/ultraestructura , Animales , Aorta Torácica/fisiopatología , Aorta Torácica/ultraestructura , Metabolismo Energético , Hemodinámica , Interleucina-18/genética , Ratones Endogámicos BALB C , Ratones Noqueados , Mitocondrias/patología , Mitocondrias/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
16.
Pharmacol Res ; 140: 43-49, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30189295

RESUMEN

Perivascular adipose tissue (PVAT) modulates vascular tone and altered PVAT function is observed in vascular diseases such as hypertension and atherosclerosis. We discovered that the PVAT surrounding rat thoracic aorta (RA) and the superior mesenteric artery (SMA) contain significant amounts of 5-hydroxytryptamine (5-HT). We hypothesized that the 5-HT contained within the PVAT is functional and vasoactive. Isolated tissue baths were used for isometric contractility studies and high performance liquid chromatography was used to quantitatively measure amines in the PVAT and release studies. The 5-HT releaser fenfluramine (10 nM-100 µM) was tested for its ability to contract arteries with and without PVAT. Contraction was reported as a percentage of the initial contraction to 10 µM phenylephrine. The RA with PVAT contracted to fenfluramine to a greater maximum (98 ± 10%) than RA without PVAT (24 ± 4%), while no difference in contraction of SMA to maximum fenfluramine with (78 ± 2%) and without (75 ± 6%) PVAT was observed. Contradicting our hypothesis, the maximum contraction of RA with PVAT to fenfluramine was diminished by the alpha-1 adrenoreceptor antagonist prazosin (100 nM; vehicle: 71 ± 4%, prazosin: 24 ± 2%) and the norepinephrine transporter (NET) inhibitor nisoxetine (1 µM; vehicle: 71 ± 4%, nisoxetine: 25 ± 4%) but not the 5-HT2A/2C receptor antagonist ketanserin (10 nM) or serotonin specific reuptake inhibitor fluoxetine (10 µM). To test if fenfluramine caused release of 5-HT or NE from PVAT, PVAT from RA was incubated with vehicle or fenfluramine (10 µM-10 mM), and amines released into the incubating buffer were quantified. A pronounced concentration-dependent NE-release (more than 5-HT) was observed. Collectively, this research illustrates the pharmacology of fenfluramine to primarily stimulate NE release (better than 5-HT) in a NET-dependent manner, leading to vasoconstriction. This adds additional support to PVAT as being an important reservoir of amines.


Asunto(s)
Tejido Adiposo/fisiología , Aorta Torácica/efectos de los fármacos , Fenfluramina/farmacología , Norepinefrina/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Aorta Torácica/fisiología , Masculino , Ratas Sprague-Dawley , Serotonina/fisiología , Vasoconstricción/efectos de los fármacos
17.
Acta Pharmacol Sin ; 40(1): 46-54, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30002491

RESUMEN

Perivascular adipose tissue (PVAT), a special type of adipose tissue, closely surrounds vascular adventitia and produces numerous bioactive substances to maintain vascular homeostasis. PVAT dysfunction has a crucial role in regulating vascular remodeling, but the exact mechanisms remain unclear. In this study, we investigated whether and how obesity-induced PVAT dysfunction affected adventitia remodeling in early vascular injury stages. Mini pigs were fed a high sugar and fat diet for 6 months to induce metabolic syndrome and obesity. In the mini pigs, left carotid vascular injury was then generated using balloon dilation. Compared with normal mini pigs, obese mini pigs displayed significantly enhanced vascular injury-induced adventitial responses, evidenced by adventitia fibroblast (AF) proliferation and differentiation, and adventitia fibrosis, as well as exacerbated PVAT dysfunction characterized by increased accumulation of resident macrophages, particularly the M1 pro-inflammatory phenotype, increased expression of leptin and decreased expression of adiponectin, and production of pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. Primary AFs cultured in PVAT-conditioned medium from obese mini pigs also showed significantly increased proliferation and differentiation. We further revealed that activated nod-like receptor protein 3 (NLRP3) inflammasome and its downstream products, i.e., IL-1 family members such as IL-1ß and IL-18 were upregulated in the PVAT of obese mini pigs; PVAT dysfunction was also demonstrated in preadipocytes treated with palmitic acid. Finally, we showed that pretreatment with IL-1 receptor (IL-1R) antagonist or IL-1R knockdown blocked AF proliferation and differentiation in AFs cultured in PVAT-conditioned medium. These results demonstrate that obesity-induced PVAT dysfunction aggravates adventitial remodeling after early vascular injury with elevated AF proliferation and differentiation via activating the NLRP3/IL-1 signaling pathway.


Asunto(s)
Tejido Adiposo/fisiopatología , Adventicia/fisiopatología , Vasos Sanguíneos/fisiopatología , Obesidad/fisiopatología , Remodelación Vascular/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Fibroblastos/fisiología , Inflamasomas/metabolismo , Interleucina-1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Porcinos , Porcinos Enanos
18.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1085-R1095, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256681

RESUMEN

Clinical studies have shown that obesity negatively impacts large arteries' function. We reported that rats exposed to maternal separation (MatSep), a model of early life stress, display enhanced angiotensin II (ANG II)-induced vasoconstriction in aortic rings cleaned of perivascular adipose tissue (PVAT) under normal diet (ND) conditions. We hypothesized that exposure to MatSep promotes a greater loss of PVAT-mediated protective effects on vascular function and loss of blood pressure (BP) rhythm in rats fed a high-fat diet (HFD) when compared with controls. MatSep was performed in male Wistar-Kyoto rats from days 2 to 14 of life. Normally reared littermates served as controls. On ND, aortic rings from MatSep rats with PVAT removed showed increased ANG II-mediated vasoconstriction versus controls; however, rings from MatSep rats with intact PVAT displayed blunted constriction. This effect was exacerbated by an HFD in both groups; however, the anticontractile effect of PVAT was greater in MatSep rats. Acetylcholine-induced relaxation was similar in MatSep and control rats fed an ND, regardless of the presence of PVAT. HFD impaired aortic relaxation in rings without PVAT from MatSep rats, whereas the presence of PVAT improved relaxation in both groups. On an HFD, immunolocalization of vascular smooth muscle-derived ANG-(1-7) and PVAT-derived adiponectin abundances were increased in MatSep. In rats fed an HFD, 24-h BP and BP rhythms were similar between groups. In summary, MatSep enhanced the ability of PVAT to blunt the heightened ANG II-induced vasoconstriction and endothelial dysfunction in rats fed an HFD. This protective effect may be mediated via the upregulation of vasoprotective factors within the adipovascular axis.


Asunto(s)
Tejido Adiposo/fisiopatología , Dieta Alta en Grasa/efectos adversos , Privación Materna , Obesidad/fisiopatología , Angiotensina II/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Masculino , Óxido Nítrico/farmacología , Ratas , Vasoconstricción/efectos de los fármacos
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 946-957, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28579235

RESUMEN

AIMS: To investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice. METHODS AND RESULTS: Experiments were performed using irradiated LDL receptor-deficient (LDLR-/-) mice with marrow from either TLR4-deficient (TLR4-/-) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4-/-→LDLR-/- mice developed fewer atherosclerotic lesions in the aorta compared to WT→LDLR-/- mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4-/-→LDLR-/- mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4-/- mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4-/- mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects. CONCLUSIONS: These results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Aterosclerosis/metabolismo , Inflamación/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Biomarcadores/metabolismo , Médula Ósea/metabolismo , Gotas Lipídicas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Perilipina-1/metabolismo , Receptores de LDL/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA