Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Invertebr Pathol ; 203: 108058, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182102

RESUMEN

White spot disease, caused by white spot syndrome virus (WSSV), has historically been the most devastating disease in shrimp aquaculture industry across the world. The mode of virus transmission is the most crucial stage in the dynamics and management of virus infection. This study explored the mechanism of vertical transmission of WSSV in Indian white shrimp, Penaeus indicus, potential native species for domestication and genetic improvement, using quantitative real time PCR (q RT PCR), light and electron microscopy, and in situ hybridization. Wild brooders of P. indicus (n = 2576) were sampled along the South east coast of India, during 2016 to 2021. Of these âˆ¼ 58 % of the brooders were positive for WSSV, and almost 50 % of infected wild brooders were at the various stages of reproductive maturation. WSSV-PCR positive brooders (n = 200) were analysed for vertical WSSV transmission. The q RT PCR studies of reproductive tissues revealed that 61 % (n = 13) of spermatophore, 54 % (n = 28) of immature ovaries and 48 % (n = 27) of ripe ovaries were infected with WSSV. The lowest level of infection was recorded in females with ripe ovaries (6.84 × 101 ± 9.79 × 100 ng genomic DNA) followed by fertilized eggs (1.59 × 102 ± 3.69 × 101 ng genomic DNA), and larvae (nauplius and zoea). The histology of gravid females with high WSSV copies showed pyknotic and karyorrhectic germinal vesicle with degenerated cortical rods. Conversely, the gravid females with low WSSV copies showed fully developed ovary without characteristic signs of WSSV infection. Transmission electron microscopic studies clearly established the presence of WSSV particles in both ovaries and spermatophores. When subjected to in situ hybridization, WSSV-specific signals were observed in connective tissues of spermatophore, although gravid ovary and fertilized eggs were failed to produce WSSV specific signals. The present study provides the first molecular and histological evidence for trans-ovarian vertical transmission of WSSV. Development of disease-free base population being the cornerstone and first step in establishing the breeding program, the present findings could be a basis for development of such programs.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Femenino , Animales , Virus del Síndrome de la Mancha Blanca 1/genética , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN Viral/análisis , Acuicultura
2.
Mol Biol Rep ; 50(11): 9295-9306, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812353

RESUMEN

BACKGROUND: The Indian white shrimp, Penaeus indicus a native species of India, is important brackishwater aquaculture species. Shrimps are euryhaline in nature and they regulate osmotic and ionic concentrations by osmoregulatory process. However, variations in abiotic factors such as salinity result in stress to the shrimps during culture period affecting their growth and immunity. METHODS AND RESULTS: To understand the adaptive mechanism to stress in low salinity conditions, RNA-seq was used to compare the transcriptomic response of P. indicus upto 3 weeks. De novo assembly using Trinity assembler generated a total of 173,582 transcripts. The assembly had a mean length of 854 bp, N50 value of 1243 bp and GC content of 42.33%. Differential gene expression analysis, resulted in identification of 2130, 3090, and 5351 DEGs in 7 days, 14 days and 21 days respectively of salinity stress period. The pathway prediction of the assembled trinity transcripts using KEGG database showed total number of 329 pathways linking 12,430 transcripts. KEGG pathway enrichment analyses led to the identification of several enriched pathways related to lipid metabolism, amino acid metabolism, glycolysis, signalling pathways etc. Selected genes involved in osmoregulatory process and immune response in shrimps were validated and analysed for the gene expression levels by quantitative real-time PCR (qPCR). CONCLUSION: This study on the adaptive transcriptomic response of P. indicus to low salinity, will further help in our understanding of the molecular mechanisms underlying osmoregulation mechanism in shrimps.


Asunto(s)
Penaeidae , Transcriptoma , Animales , Transcriptoma/genética , Penaeidae/genética , Perfilación de la Expresión Génica , Estrés Salino/genética , Osmorregulación/genética , Salinidad
3.
Fish Shellfish Immunol ; 119: 31-41, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34487828

RESUMEN

The present study focuses on the immunity and growth of Penaeus indicus fed with varying protein levels (25%, 30%, and 35%) in a biofloc based rearing system. A 120 days growth trial was carried out using juvenile Penaeus indicus (0.71 ± 0.01) with dietary protein level, 25% (LP), 30% (MP), and 35% (HP), and a control diet-fed with 35% acted as control group resulting in 4 treatments each with four replicates and were randomly assigned 16 tank units (7500 L each). A combination of different carbon sources (molasses, wheat flour, and rice bran in 2:1:1 ratio), yeast and a probiotic (Bacillus sp.) consortium were used for the development of biofloc. At the end of the trial, the growth parameters of shrimps viz., initial weight, feed conversion ratio (FCR), and daily growth coefficient (DGC) were computed. The results indicated that shrimp fed with medium (30%) protein (MP) diet recorded significantly (P < 0.05) improved growth performance compared to high protein fed group (35%) and low protein (25%) fed group (LP) in a biofloc system and control group (35%). The immunological parameters such as hemagglutination activity (HA) assay, serum protein, lysozyme, phenol oxidase (PO), and inhibition of superoxide dismutase (SOD) activity were observed in serum, plasma, and hemocyte lysate supernatant (HLS). The HA activity, PO activity in plasma was found to be higher in high protein fed animals, whereas medium protein resulted in enhanced PO activity in serum. Similarly, lysozyme and SOD were inhibited well in high protein fed animals compared to the low protein fed group. The vital immune genes's mRNA profiling showed a potential rise in the expressional pattern in MP and HP treatments compared to LP and control. BGBP (beta-1,3-glucan binding protein) and hemocyanin mRNA transcript levels were highly upregulated in the HP (5 fold) and moderately expressed in MP (2 fold) and LP (1-2 fold). The transcripts of peroxinectin, antimicrobial peptides like crustin showed significant upregulation in HP followed by in MP and LP and control. Likewise, other immune genes, such as SOD, prophenoloxidase (proPO), showed a similar trend in a marginal way, indicating immunomodulation in the biofloc groups. This study suggested that biofloc with high protein (35%) supplementation can substantially enhance the immune response of shrimps, although medium protein level (30%) is optimum for improving the survival, growth, and in turn economic return in Indian white shrimp.


Asunto(s)
Penaeidae , Alimentación Animal/análisis , Animales , Péptidos Antimicrobianos , Acuicultura , Dieta/veterinaria , Suplementos Dietéticos , Harina , Inmunidad , Inmunidad Innata , Muramidasa , Penaeidae/genética , ARN Mensajero , Superóxido Dismutasa , Triticum
4.
Antonie Van Leeuwenhoek ; 114(12): 2019-2031, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34536184

RESUMEN

The endemic Indian white shrimp (Penaeus indicus) is an economically important crustacean species, distributed in the Indo-West Pacific region. Knowledge of its gut microbial composition helps in dietary interventions to ensure improved health and production. Here we analyzed V3-V4 hypervariable regions of the 16 S rRNA gene to examine intestinal microbiota in wild and domesticated farmed P. indicus. The study revealed that Proteobacteria, Fusobacteria, Tenericutes, and Bacteroidetes, were the dominant phyla in both the groups although there were differences in relative abundance. The dominant genera in case of the wild group were Photobacterium (29.5 %) followed by Propionigenium (13.9 %), Hypnocyclicus (13.7 %) and Vibrio (11.1 %); while Vibrio (46.5 %), Catenococcus (14 %), Propionigenium (10.3 %) and Photobacterium (8.7 %) were dominant in the farmed group. The results of the study suggest the role of environment on the relative abundance of gut bacteria. This is the first report characterizing gut microbial diversity in P. indicus, which can be used to understand the role of gut microbiota in health, nutrition, reproduction, and growth.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Bacterias/genética , Microbioma Gastrointestinal/genética , Genes de ARNr , ARN Ribosómico 16S/genética
5.
Fish Shellfish Immunol ; 98: 477-487, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31945485

RESUMEN

Effect of bio-augmentation of Bacillus spp in biofloc on growth, survival and immunity in Indian white shrimp Penaeus indicus was evaluated. Nine Bacillus strains were isolated and screened individually as well as in the form of a consortia. To maintain a C:N ratio of 12:1 a blend of carbohydrate sources was used. Bio-augmentation with bacterial consortium and Virgibacillus sp. produced improved growth and immunity. Shrimp survival ranged from 80 to 95% among treatments. Production was higher (35%) in the biofloc tanks with an average body weight (ABW) of 10.89 ± 1.2 g. On evaluating the immune responses, it was found that trypsin significantly (P < 0.05) enhanced Prophenoloxidase (PO) activity in Lysinibacillus, Bacillus cereus, Bacillus licheniformis and Bacillus subtilis bio-augmented groups. Laminarin induced PO activity was observed in groups supplemented with Oceanobacillus sp., Bacillus sp.and Bacillus megaterium. The lysozyme (LZ) activity was significantly (P < 0.05) higher in B. cereus and Microbial Consortia (MC), while other treatments were less effective. Total hemocyte count (THC) significantly (P < 0.05) increased in all treatment groups compared to the control. Hyaline hemocyte (HH) count was significantly (P < 0.05) higher in the control group (14.43%). Semi granular hemocytes (SGH) was higher in groups treated with Lysinibacillus, Bacillus sp., B. licheniformis and B. subtilis. The granular hemocyte (GH) count was significantly (P < 0.05) higher in Virgibacillus sp., B. cereus, B.megaterium and Oceanobacillus sp. The biofloc alone (BF), treated and augmented with B. megaterium significantly (P < 0.05) increased phagocytic activity. Highly significant phagocytic index (PI) was observed in bio-augmented groups, BF and MC. The relative expression levels of immune genes were found to be significantly up-regulated in shrimps grown in bio-augmented groups. Enhanced immunological parameters implies that bio-augmentation of biofloc with Bacillus spp. improved immunity in shrimps. Hence, bio-augmentation of probiotics in biofloc may be useful in improving culture conditions to produce P. indicus.


Asunto(s)
Acuicultura/métodos , Bacterias/clasificación , Penaeidae/fisiología , Crianza de Animales Domésticos , Animales , Penaeidae/inmunología , Organismos Libres de Patógenos Específicos
6.
Mol Biol Rep ; 47(5): 3797-3805, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32363413

RESUMEN

Solute carrier proteins (SLC) are essential membrane transport proteins responsible for transporting lipids, amino acids, sugars, neurotransmitters, and drugs across the biological membranes. Dysfunction of these carrier proteins may lead to an imbalance of biological mechanisms and also in the failure of the transporting pathways of several signaling neurotransmitters. In the present study, a 646 bp of a solute carrier protein (SLC15A4) was cloned and sequenced from the Indian white shrimp, Penaeus indicus. Multiple sequence alignment using ClustalW and phylogenetic analysis of putative SLC15A4 fragment from P. indicus (PiSLC15A4) was performed using Mega X tool. Tissue distribution analysis was carried out using real-time PCR. The differential expressions of PiSLC15A4 were also analyzed in the ovaries and brain tissues of wild-caught female shrimps at different maturation stages and in the brain tissues of captive females subjected to induce maturation by eyestalk ablation. Significant diversity in SLC15A4 sequence obtained from P. indicus was observed when compared to the other species. Tissue distribution analysis confirmed the ubiquitous expression of PiSLC15A4 in all the tissues examined. The differential expressions of PiSLC15A4 indicated higher expression of the gene in brain tissue of females at the vitellogenic stage, while the expressions in ovaries were significantly higher in the immature stage. The differential expressions of PiSLC15A4 in the brain tissues were substantially higher in eyestalk ablated shrimps compared to the eyestalk intact females. The study suggests a role for SLC15A4 in the endocrine signaling pathways stimulating ovarian maturation in P. indicus.


Asunto(s)
Ovario/crecimiento & desarrollo , Penaeidae/genética , Proteínas Transportadoras de Solutos/genética , Secuencia de Aminoácidos/genética , Animales , Clonación Molecular/métodos , Femenino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ovario/metabolismo , Penaeidae/metabolismo , Filogenia , Alineación de Secuencia/métodos , Diferenciación Sexual/genética , Proteínas Transportadoras de Solutos/metabolismo
7.
Life (Basel) ; 13(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836905

RESUMEN

BACKGROUND: Marketed fish and shellfish are a source of multidrug-resistant and biofilm-forming foodborne pathogenic microorganisms. METHODS: Bacteria isolated from Sparus aurata and Penaeus indicus collected from a local market in Hail region (Saudi Arabia) were isolated on selective and chromogenic media and identified by using 16S RNA sequencing technique. The exoenzyme production and the antibiotic susceptibility patterns of all identified bacteria were also tested. All identified bacteria were tested for their ability to form biofilm by using both qualitative and quantitative assays. RESULTS: Using 16S RNA sequencing method, eight genera were identified dominated by Vibrio (42.85%), Aeromonas (23.80%), and Photobacterium (9.52%). The dominant species were V. natrigens (23.8%) and A. veronii (23.80%). All the identified strains were able to produce several exoenzymes (amylases, gelatinase, haemolysins, lecithinase, DNase, lipase, and caseinase). All tested bacteria were multidrug-resistant with a high value of the multiple antibiotic index (MARI). The antibiotic resistance index (ARI) was about 0.542 for Vibrio spp. and 0.553 for Aeromonas spp. On Congo red agar, six morphotypes were obtained, and 33.33% were slime-positive bacteria. Almost all tested microorganisms were able to form a biofilm on glass tube. Using the crystal violet technique, the tested bacteria were able to form a biofilm on glass, plastic, and polystyrene abiotic surfaces with different magnitude. CONCLUSIONS: Our findings suggest that marketed S. aurata and P. indicus harbor various bacteria with human interest that are able to produce several related-virulence factors.

8.
Anim Reprod Sci ; 235: 106885, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794091

RESUMEN

Managing the reproduction of shrimp farmed in captivity is essential for selective breeding and interspecies hybridization. Procedures have not been developed for conducting in vitro fertilization in penaeid shrimp. In this study, the feasibility of in vitro fertilization (IVF) of the pre-ovulatory oocyte of Penaeus indicus was examined. Additionally, the processes of fertilization and possibility of hybridizing P. indicus with P. monodon with utilization of IVF procedures was also evaluated. The IVF was conducted by dissecting ovaries with fully developed follicles, and mixing these (~0.1 million oocytes) with 1 mL of a sperm suspension. Evaluations for fertilization and embryonic development occurred every l5 min. The eggs collected from the ovaries had the capacity for activation and fertilization. The hatching rate was 5.5 ± 1.1% of the total number of eggs fertilized, and 8.2 ± 4.8% of the nauplii developed to the post-larval stage. Results from the scanning electron micrograph evaluations provided detailed information about the changes occurring as a result of IVF in P. indicus. Interspecific hybridization of P. indicus with P. monodon did not result in hatching of embryos from the eggs, although 1% of eggs were fertilized. A reliable and inexpensive IVF procedure was developed, therefore, IVF could be an efficacious procedure for facilitation of intraspecific cross production in a penaeid breeding program. Furthermore, it was determined that IVF could be a possible procedure for interspecies hybridization between closely related species to circumvent prezygotic barriers in reproductive processes.


Asunto(s)
Fertilización In Vitro/veterinaria , Hibridación Genética , Oocitos/fisiología , Penaeidae/fisiología , Animales , Fertilización In Vitro/métodos
9.
Environ Sci Pollut Res Int ; 27(23): 29612-29622, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32440880

RESUMEN

The objective of the present research is to study the levels of reactive oxygen species (ROS) and protein carbonyl (PC) and the functional protein levels of metallothioneins (MT) in Penaeus indicus postlarvae (PL) upon sublethal copper exposure and to determine the biomarkers. The PL were exposed to sublethal copper of 0.164 ppm. The experiments were carried out in the laboratory over a period of 30 days with sampling intervals of 24, 48, and 96 h and 10, 20, and 30 days. The present study confirms that high oxidative stress can be induced from 24 h onwards upon sublethal exposure to copper in P. indicus PL. This is evident from the increasing levels of ROS in the exposed PL during both short-term and long-term exposures to sublethal copper. Since variability in metallothionein levels from 24 h through 30 days of experimental period was observed, metallothioneins cannot be regarded as a good biomarker as far as copper toxicity with respect to P. indicus PL is concerned. The effect of copper on protein carbonyl seems to be very rapid and consistent. The results suggest that protein carbonyl in P. indicus PL is significantly induced in a time-dependent manner upon copper exposure even at sublethal dose, and it seems reasonable to support that protein carbonyl could be used as a biomarker to copper toxicity.


Asunto(s)
Cobre , Penaeidae , Animales , Biomarcadores , Metalotioneína , Estrés Oxidativo
10.
Artículo en Inglés | MEDLINE | ID: mdl-30880278

RESUMEN

Methyl farnesoate (MF), a sesquiterpenoid synthesized in the mandibular organ, regulates many physiological processes in crustaceans including growth and reproduction. In the present study, farnesoic acid O-methyltransferase (FAMeT), the key enzyme responsible for final step conversion of farnesoic acid (FA) to methyl farnesoate (MF), was cloned and characterized from the nervous tissues of Penaeus indicus. Multiple sequence alignment, prediction of conserved domain regions, phosphorylation sites identification and phylogenetic analysis indicated that putative FAMeT fragment from P. indicus (PiFAMeT), shares a high degree of sequence identity to FAMeT proteins isolated from other crustaceans species. Quantitative real-time PCR analysis revealed ubiquitous expression of PiFAMeT in all the tissues examined, with comparative higher mRNA levels in nervous tissue and ovary. Additionally, the levels of PiFAMeT also showed gradual increase of expression correlating with the advancement in ovarian maturation. Further to support their role in promoting ovarian development, serotonin treatment (5HT, 50 µg/g body weight) was given to eyestalk intact and unilaterally eyestalk ablated females which resulted in significant increase in PiFAMeT transcript levels at day 7 and day 14. The relatively higher levels of PiFAMeT, reflecting higher levels of MF, suggest a role during secondary vitellogenesis thereby regulating ovarian development in P. indicus. Further research is required to understand the synergistic interaction of MF pathways with serotonergic and other regulatory pathways in regulating ovarian maturation in penaeid shrimps.


Asunto(s)
Proteínas de Artrópodos , Regulación Enzimológica de la Expresión Génica/fisiología , Metiltransferasas , Ovario/enzimología , Penaeidae , Vitelogénesis/fisiología , Animales , Proteínas de Artrópodos/biosíntesis , Proteínas de Artrópodos/genética , Clonación Molecular , Femenino , Metiltransferasas/biosíntesis , Metiltransferasas/genética , Ovario/citología , Penaeidae/enzimología , Penaeidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA