Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Sci Technol ; 58(35): 15722-15731, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39175437

RESUMEN

Nitrites (NO2-/HONO), as the primary source of hydroxyl radicals (•OH) in the atmosphere, play a key role in atmospheric chemistry. However, the current understanding of the source of NO2-/HONO is insufficient and therefore hinders the accurate quantification of atmospheric oxidation capacity. Herein, we highlighted an overlooked HONO source by the reaction between nitrophenols (NPs) and •OH in the aqueous phase and provided kinetic data to better evaluate the contribution of this process to atmospheric HONO. Three typical NPs, including 4-nitrophenol (4NP), 2-nitrophenol (2NP), and 4-nitrocatechol (4NC), underwent a denitration process to form aqueous NO2- and gaseous HONO through the •OH oxidation, with the yield of NO2-/HONO varied from 15.0 to 33.5%. According to chemical composition and structure analysis, the reaction pathway, where the ipso addition of •OH to the NO2 group on 4NP generated hydroquinone, can contribute to more than 61.9% of the NO2-/HONO formation. The aqueous photooxidation of NPs may account for HONO in the atmosphere, depending on the specific conditions. The results clearly suggest that the photooxidation of NPs should be considered in the field observation and calculation to better evaluate the HONO budget in the atmosphere.


Asunto(s)
Nitrofenoles , Oxidación-Reducción , Nitrofenoles/química , Nitritos/química , Atmósfera/química , Radical Hidroxilo/química , Agua/química , Cinética
2.
Environ Sci Technol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215709

RESUMEN

Microplastics, particularly microfibers (MFs), pose a significant threat to the environment. Despite their widespread presence, the photochemical reactivity, weathering products, and environmental fate of MFs remain poorly understood. To address this knowledge gap, photodegradation experiments were conducted on three prevalent MFs: polyester (POL), nylon (NYL), and acrylic (ACR), to elucidate their degradation pathways, changes in surface morphology and polymer structure, and chemical and colloidal characterization of weathering products during photochemical degradation of MFs. The results showed that concentrations of dissolved organic carbon, chromophoric dissolved organic matter (DOM), and fluorescent components consistently increased during weathering, exhibiting a continuous release of DOM. Scanning electron microscopy and Raman spectroscopy revealed changes in the surface morphology and polymer spectra of the MFs. During the weathering experiments, DOM aromaticity (SUVA254) decreased, while spectral slope increased, indicating concurrent DOM release and degradation of aromatic components. The released DOM or nanoplastics were negatively charged with sizes between 128 and 374 nm. The production rate constants of DOM or the photochemical reactivity of MFs followed the order ACR > NYL ≥ POL, consistent with their differences in chemical structures. These findings provide an improved understanding of the photochemical reactivity, degradation pathways, weathering products, and environmental fate of microfibers in the environment.

3.
Environ Sci Technol ; 57(21): 7966-7977, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37186871

RESUMEN

Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity. However, at the molecular level, RNA sequencing revealed differences in the number of differentially expressed genes (DEGs) for each leachate treatment: thousands of genes (5442 P, 577 D) for the additive-free film, tens of genes for the additive-containing conventional bag (14 P, 7 D), and none for the additive-containing recycled bag. Gene ontology enrichment analyses suggested that the additive-free PE leachates disrupted neuromuscular processes via biophysical signaling; this was most pronounced for the photoproduced leachates. We suggest that the fewer DEGs elicited by the leachates from conventional PE bags (and none from recycled bags) could be due to differences in photoproduced leachate composition caused by titanium dioxide-catalyzed reactions not present in the additive-free PE. This work demonstrates that the potential toxicity of plastic photoproducts can be product formulation-specific.


Asunto(s)
Polietileno , Contaminantes Químicos del Agua , Animales , Polietileno/toxicidad , Pez Cebra , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Plásticos/toxicidad , Agua
4.
Environ Res ; 211: 113031, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35283072

RESUMEN

Ionic liquids (ILs) with promising application are likely to become ubiquitous contaminants in water environment for their high hydrophilicity, low biodegradability, and especially its potential toxicity. In this work, we have investigated photochemical transformation of six imidazolium ILs for fate prediction and ecological risk assessment. We found that the reaction rates of the ILs with •OH, CO3•─ and 1O2 enhanced with their increasing alkyl chain and varied slightly with the paired anions. Meanwhile, modelled results under different scenarios indicate that the primary contributors to transformation of the ILs are triplet-stated dissolved matter (3CDOM*), •OH and CO3•-. Besides, the overall half-lives of the ILs can reach 670 days, which indicates persistence of these ILs in the environment. Products for ILs in reaction with •OH and triplet-stated sodium anthraquinone-2-sulfonate (3AQ2S*) were probed by UHPLC-Q-TOF-MS/MS and there is a difference between their products: Products by •OH are likely formed by hydrogen abstraction from the side alkyl chain, followed by dehydrogenation, hydroxylation and carbonylation, while one of the products by 3AQ2S* is formed by dihydroxyl-addition of the imidazolium ring. Furthermore, the ILs and its products were estimated to have toxicity and non-readily biodegradability, suggesting potential eco-risk for the environmental water.


Asunto(s)
Contaminantes Ambientales , Líquidos Iónicos , Cinética , Espectrometría de Masas en Tándem , Agua
5.
Ecotoxicol Environ Saf ; 211: 111950, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33493723

RESUMEN

Recently, fragrance ingredients have attracted increasing attention due to their imperceptible risks accompanying the comfortable feeling. To understand transformation mechanisms and toxicity evolution of benzyl formate (BF) in environment, its photochemical degradation in water was thoroughly studied herein. Results showed that 83.5% BF was degraded under ultraviolet (UV) irradiation for 30 min. Laser flash photolysis and quenching experiments demonstrated that triplet excited state (3BF*), O2•-, and 1O2 were three main reactive species found during BF photodegradation. Eight degradation intermediates, including benzaldehyde, benzyl alcohol, o-cresol, bibenzyl, benzyl ether, 1,2-diphenylethanol, benzoic acid, and benzylhemiformal, were mainly formed as identified by LC-Q-TOF/MS and GC-MS analyses. Furthermore, the degradation mechanism was explained as the bond cleavage of 3BF* and BF•+, O2•-/1O2 oxidation, eaq- reduction, and •OH addition reactions. Aquatic assessment suggests that except benzyl alcohol, benzoic acid, and benzylhemiformal, all the products were persistent and could result in increased aquatic toxicity compared to original BF. Consequently, these degradation products may cause more toxicity to organisms if they remain accumulated in water environment for a long time.


Asunto(s)
Formiatos/toxicidad , Procesos Fotoquímicos , Contaminantes Químicos del Agua/toxicidad , Cinética , Luz , Odorantes , Perfumes , Fotólisis , Rayos Ultravioleta , Agua/química , Contaminantes Químicos del Agua/química
6.
Sci Total Environ ; 924: 171292, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38432371

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large chemical family, and numerous chemical species can co-exist in environmental samples, especially those impacted by aqueous film-forming foams (AFFFs). Given the limited availability of chemical standards, capturing the total amount of PFAS is challenging. Thus, the total oxidizable precursor (TOP) assay has been developed to estimate the total amount of PFAS via the oxidative conversion of precursors into perfluorocarboxylic acids (PFCAs). This study aims to enhance the robustness of the TOP assay by replacing heat activation with UV activation. We evaluated the molar yields of known precursors in water in the presence of varying levels of Suwannee River natural organic matter (SRNOM) and in two soils. The impact of UV activation was also evaluated in two soils spiked with three well-characterized AFFFs, six AFFF-impacted field soils, and nine rinse samples of AFFF-impacted stainless-steel pipe. In the presence of 100 mg/L SNROM, 6:2 fluorotelomer sulfonate (FTS), 8:2 FTS, and N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) in deionized water had good molar recovery as PFCAs (average of 102 ± 9.8 %); at 500 mg/L SNROM, the recovery significantly dropped to an average of 51 ± 19 %. In two soils (with 4 % and 8.8 % organic matter) with individual precursor spikes, the average molar recovery was 101 ± 9.4 %, except N-EtFOSAA, which had a reduced recovery in the soil with 8.8 % organic matter (OM). UV-activated assays outperformed heat-activated ones, especially in AFFF-impacted soils and pipe extract samples, with an average of 1.4-1.5× higher PFCA recovery. In almost all test samples, UV activation resulted in a notable shift towards longer PFCA chain lengths, particularly for samples with high OM content. The study confirmed the advantages of UV activation, including a significantly shortened exposure time (1 h vs. 6 h) and reduced matrix effects from OM due to the dual functions of UV in activating persulfate and photodegrading OM.

7.
J Hazard Mater ; 443(Pt A): 130143, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252403

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are frequently released in aqueous phase by oil spill or from other sources, and photochemical oxidation is one of their major weathering processes. In this study, the photochemical behavior of phenanthrene (PHE, as a representative PAH) were studied and the effects of nitrogenous compounds were evaluated. The results showed that nitrate was an effective photosensitizer for improving the photodegradation of PHE, but the promoting effect was less effective in seawater due to the presence of halogen ions; the ammonia played a negligible role on PHE degradation. The photochemical ionization was a key process for PHE degradation, it can be retarded due to the quenching of triplet excited state by dissolved oxygen, and the inhibition was most prominent in fresh water. The presence of nitrate increased the steady state concentration of •OH from 2.08 × 10-15 M to 1.04 × 10-14 M in fresh water, and from 1.5 × 10-16 M to 2.08 × 10-15 M in seawater. The secondary-order reaction rate constant between PHE and •OH (k•OH,PHE) was determined as 5.70 × 109 M-1 s-1. Similar trend was observed for 1O2. The contribution of •OH to PHE removal was more prominent in fresh water than in seawater due to the quenching effects of halogen, and the increasing of nitrate enlarged the contribution of •OH. Two possible PHE degradation pathways were proposed based on GC-MS analysis and DFT calculation. The Quantitative Structure-activity Relationship (QSAR) evaluation showed that some degradation intermediates were more toxic than PHE, but the total environmental risk was still diminished due to the low percentage of toxic intermediates. This study provided theoretical and experimental insights into the influence of nitrogenous compounds on the photodegradation of PHAs in water environment.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Fotólisis , Nitratos/análisis , Contaminantes Químicos del Agua/química , Compuestos Orgánicos , Agua/química , Óxidos de Nitrógeno , Nutrientes/análisis , Halógenos
8.
J Hazard Mater ; 460: 132259, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633018

RESUMEN

Photodegradation process plays an important role in the natural attenuation of petroleum hydrocarbons (PHs) in oil contaminated soil. The photodegradation characteristics of PHs (C10-C40) in topsoil of crude oil contaminated soil irradiated by simulated sunlight in 280 d without microbial action were investigated. The results showed that photodegradation rate of PHs was increased with increasing the light intensity and decreased with increasing the initial concentration of PHs. Moreover, the photodegradation capacity of tested PHs was relevant to the length of carbon chain. The photodegradation rates of C10-C20 were higher than that of C21-C40 in photoperiod. C21-C40 showed an obvious trend of photodegradation after 56 d, although their photodegradation rates were less than 20% at the early stage. And, the redundancy analysis indicated that lighting time was the primary factor for photodegradation of PHs under abiotic conditions. The photodegradation rate was well interpreted by a two-stage, first-order kinetic law with a faster initial photolysis rate. The EPR spectrums showed that simulated solar irradiation accelerated the generation of superoxide radicals, which could react with PHs in soil. Also, the function groups in PHs polluted soil were changed after light exposure, which might imply the possible photodegradation pathway of PHs.

9.
Sci Total Environ ; 859(Pt 1): 160311, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36403842

RESUMEN

The ubiquitous presence of synthetic musks is causing serious concern due to the species produced from their transformation and environmental impacts. In this study, tonalide was selected as a representative synthetic musk to evaluate the transformation mechanism and pathway in water under ultraviolet (UV) irradiation. The results showed that tonalide could undergo rapid photochemical degradation through a new pivotal bi-radical, which acts as the initial active species. The bi-radicals with a typical absorption peak at 340 nm was observed by in-situ laser flash photolysis technology, and the absolute decay rate constant was obtained as 3.61 ± 0.01 × 109 M-1 s-1 with the life-time of 83.3 ns. The photochemical degradation by-products of tonalide were also identified by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, and the precise structures of key by-products have been validated by our preparative synthesized standard samples confirmed by nuclear magnetic resonance. Thus, the mechanism of tonalide photochemical degradation, continuous photoenolization of the bi-radicals and followed cycloaddition reaction with O2, was proposed as the predominant pathway. The main degradation by-product, photoenol which has a higher bioconcentration than that of tonalide, was found to form from the bi-radicals photoenolization. This study is the first work to propose a new bi-radical as the photoenol precursors during photochemical degradation of tonalide in water.


Asunto(s)
Luz , Agua , Fotólisis , Rayos Ultravioleta , Rayos Láser
10.
Polymers (Basel) ; 15(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835934

RESUMEN

The photochemical degradation of natural rubber (NR) is a prevalent method used to modify its inherent properties. Natural rubber, predominantly derived from the Hevea Brasiliensis tree, exhibits an exceptionally high molecular weight (MW), often reaching a million daltons (Da). This high MW restricts its solubility in various solvents and its reactivity with polar compounds, thereby constraining its versatile applications. In our previous work, we employed TiO2 in its powdered form as a photocatalyst for the functionalization of NR latex. However, the post-process separation and reuse of this powder present substantial challenges. In this present study, we aimed to functionalize deproteinized NR (DPNR) latex. We systematically reduced its MW via photochemical degradation under UVA irradiation facilitated by H2O2. To enhance the efficiency of the degradation process, we introduced TiO2-coated hollow glass beads (TiO2-HGBs) as photocatalysts. This approach offers the advantage of easy collection and repeated reuse. The modified DPNR showed a reduction in its number-average MW from 9.48 × 105 to 0.28 × 105 Da and incorporated functional groups, including hydroxyl, carbonyl, and epoxide. Remarkably, the TiO2-HGBs maintained their performance over seven cycles of reuse. Due to their superior efficacy, TiO2-HGBs stand out as promising photocatalysts for the advanced functionalization of NR across various practical applications.

11.
Adv Pharm Bull ; 12(1): 77-85, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35517884

RESUMEN

Photochemical degradation of drugs can lead to degradation products with potential toxic or allergizing effects for the human body. A significant amount of work has been carried out over the past few decades to clarify the molecular mechanism of photosensitizing processes observed after the administration of certain drugs and exposure to light. There is a close relation between the photosensitizer effect of a drug and its chemical structure. Compounds possessing certain moieties and functional groups in their molecular structure, like aromatic chromophore systems or photo-dissociable bonds that can form free radicals, and consequently are susceptible to have light-induced adverse effects. Photoionization, photodissociation, photoaddition and photoisomerization are the main chemical processes, which can occur during the photochemical decomposition of a pharmaceutical compound. The current study is a short review describing photochemical degradation of certain pharmaceuticals, presenting specific examples from various pharmaceutical classes for the different types of decomposition mechanisms. In vivo methods and clinical tests available for the investigation of photosensitizing reactions are also discussed.

12.
Chemosphere ; 290: 133300, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34914956

RESUMEN

Herein, titanium (IV) oxide (TiO2) loaded into montmorillonite (MK10) and sand is presented as an efficient heterogeneous catalyst for the degradation of 1,4-dichlorobenzene (DCB) as a model organic pollutant in the aqueous phase. The catalyst was synthesized by incorporating titanium isopropoxide as a precursor into MK10 through a simple solvent impregnation method, followed by direct calcination. The same protocol was applied to a clean quartz matrix. The resulting catalysts were characterized in detail using a variety of techniques. The TiO2 deposited MK10 and sand exhibited photochemical removal of DCB (>99% of 100 mg L-1) from the aqueous phase; this process followed a pseudo second-order kinetic model values in the range of Qe:111-113 mg g-1 and K2: 4-5 × 10-4 g mg-1 min-1. The kinetic plots indicate that after 30 min, the intermediates start to decrease and complete degradation occurs in 180 min. The modified materials showed fast DCB degradation kinetics under photochemical reaction conditions and adsorption under dark reaction conditions. The unmodified matrix adsorbed 99.12-99.88% of the DCB under both dark and light reaction conditions. These photocatalysts are stable, reusable, and least amount of titanium leaching. The simple two step synthesis, and high photocatalytic performance (with 10 mg of the catalyst without any oxidants) of our catalysts can be promising in environmental applications to treat similar organic pollutants in wastewater. These catalysts have enhanced activity and durability for environmental catalytic pollutant degradation reactions and can provide insights beyond single metal oxide catalysts for heterogeneous catalysis at diverse operating conditions.


Asunto(s)
Plaguicidas , Dióxido de Silicio , Catálisis , Titanio
13.
Chemosphere ; 295: 133923, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35143859

RESUMEN

Dissolved organic matter (DOM) plays a vital role in the biogeochemistry of aquatic ecosystems. However, the mechanisms of DOM cycling in the water column during different seasons have not been fully elucidated to date. The differences in DOM degradation in summer, autumn, and winter water columns were evaluated in this study. The results showed that bacteria played an essential role in the degradation of DOM in the summer water column. Photochemical degradation was the primary degradation pathway of DOM in the autumn and winter water columns. Notably, while DOM is degraded, photosynthetic bacteria produce organic matter through photosynthesis to replenish the water column. EEM-PARAFAC analysis indicated more tryptophan component C1 in summer, but the contents of humic substance component C2 and terrestrial substance C3 were higher in autumn and winter. In summer, more tryptophan-like components were consumed by bacteria, and Cyanobacteria produced more organic matter through photosynthesis to replenish the water column. Moreover, a similar bacterial community structure and a more active tryptophan biosynthesis pathway were found in autumn and winter. Random forest models identified representative bacteria involved in the DOM transformation process in different seasons. The above findings may be helpful to explore the degradation characteristics of DOM in different seasons and predict the fate of DOM in the water column in the future.


Asunto(s)
Cianobacterias , Ríos , Materia Orgánica Disuelta , Ecosistema , Sustancias Húmicas/análisis , Fotólisis , Fotosíntesis , Ríos/química , Espectrometría de Fluorescencia
14.
Polymers (Basel) ; 14(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890654

RESUMEN

Hydroxyl-terminated natural rubber (HTNR) is a product of interest for making natural rubber (NR) easy and versatile for use in a wide range of applications. Photochemical degradation using a TiO2 film that has been deposited on a glass substrate is one of the fascinating methods of producing HTNR. Nevertheless, light energy is wasted during the photodegradation process because a glass substrate has a cutoff for ultraviolet light. To enhance the effectiveness of the process, a quartz substrate was coated with the TiO2 film for photochemical breakdown. X-ray diffraction (XRD) spectroscopy and atomic force microscopy (AFM) were applied to investigate the TiO2 deposited on glass and quartz substrates. In addition, the influence of several factors, such as rubber and surfactant concentrations, on the reaction was investigated. After the reaction, the properties of the rubber products, including intrinsic viscosity, molecular weight, and microstructure, were determined. A unique diffraction peak for the anatase (101) phase could be observed in the TiO2 film deposited on the quartz substrate, resulting in photochemical activity and photocatalytic efficiency significantly higher than those of the substrate made of glass. In the scenario of deproteinized NR (DPNR) latex containing 10% DRC, 20% w/w H2O2, and TiO2 film coated on a quartz substrate, the HTNR could be manufactured effectively.

15.
Food Res Int ; 156: 111157, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651023

RESUMEN

The presence of ethyl carbamate in traditional fermented food is a public health concern for the FDA. The effect of forced photoirradiation (0-150,000 lx) and thermal stress (4, 25, 40 °C) on ethyl carbamate (0-150 µg/L) on physiological characteristics of Baijiu, such as esters content, photochemical degradation, and hydrogen-bond interaction efficiency were monitored by ultra high performance liquid chromatography quadrupole-orbitrap and the dynamic changes by digital foodomics analysis. Furthermore, 748 trace components covering 11 subclasses were identified in Baijiu and 71 esters were screened by Spearman's correlation, fold changes, P values and VIP values. A forward stepwise multiple regression and discriminant analysis were performed for predicting the content of esters from appearance characteristics obtained by foodomics analysis, reaching R-square values up to 0.91. A reduction of the present variation in ethyl lactate, ethyl caproate, diethyl succinate, ethyl oleate and ethyl linoleate concentration could possibly result in a better understanding of the ethyl carbamate effects. Ethyl carbamate was found to cause esters hydrolysis through inter-molecular interaction in various species of alcoholic drinks. It was demonstrated that the light exposure level and thermal intensity applied for ethyl carbamate-spiked Baijiu samples did not unambiguously influence esters concentration in Baijiu. Future research should focus on moderate light exposure level and thermal stress and should aim at reducing natural ethyl carbamate by more closely controlling the esters content of the ripening degree.


Asunto(s)
Ésteres , Uretano , Bebidas Alcohólicas/análisis , Cromatografía Líquida de Alta Presión , Ésteres/análisis , Hidrólisis , Uretano/análisis
16.
Water Res ; 217: 118442, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35429888

RESUMEN

Antidepressants are released into the aquatic environment because of their incomplete removal from wastewater treatment plants. In the present work, we investigated the photochemical degradation of a commonly prescribed antidepressant, namely sertraline, in aqueous matrices. The molar absorption coefficient of sertraline at 254 nm and at various pH values in the range from 4.0 to 9.0 was 444±65 L•mol-1•cm-1, while the quantum yield of its direct photolysis under UVC radiation (λ = 254 nm) was (1.7±0.1) × 10-2 mol∙einstein-1 (i.e., both values were relatively low). Next, we investigated the photochemical degradation of sertraline under UVC radiation in the presence of hydrogen peroxide, H2O2 (i.e., UVC/H2O2) or persulfate ions, S2O82- (i.e., UVC/PS). Several parameters were studied, such as the initial concentrations of the oxidants, solution pH, and the composition of the aqueous matrix (experiments were carried out in aqueous phosphate buffers, in synthetic wastewater, as well as in synthetic fresh and hydrolyzed human urine). It was found that, in all aqueous matrices, the photochemical degradation of sertraline followed pseudo first-order kinetics. The values of the observed pseudo first-order rate constants in the UVC/H2O2 and UVC/PS processes were from one to three orders of magnitude higher than the corresponding value in the UVC process. The UVC/PS process was more efficient than the UVC/H2O2 process, either in aqueous phosphate buffer solutions or in synthetic wastewaters, despite the comparable reactivity of sertraline towards hydroxyl and sulfate radicals. However, both processes resulted in partial mineralization of the compound after prolonged irradiation. In the UVC/H2O2 process, there was an optimum H2O2 concentration which depended on the aqueous matrix, while in the UVC/PS process, there was an almost linear increase in treatment efficiency as a function of PS concentration, at least in the range of concentrations studied in the present work. Solution pH in the range from 6.0 to 9.0 had a relatively negligible effect on treatment performance for both processes. In synthetic urine matrices, despite the reduction in reaction rate (the observed pseudo first-order rate constants were reduced by approximately one to two orders of magnitude), the photochemical degradation of sertraline proceeded to a relatively satisfactory degree. Finally, the calculations of the electrical energy per order and the associated cost showed that the UVC/H2O2 and UVC/PS processes are cost-efficient and suitable for full-scale applications.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Antidepresivos , Humanos , Peróxido de Hidrógeno/química , Cinética , Oxidación-Reducción , Fosfatos , Sertralina , Rayos Ultravioleta , Aguas Residuales , Agua , Contaminantes Químicos del Agua/química
17.
Astrobiology ; 21(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493410

RESUMEN

The search for organic biosignatures on Mars will depend on finding material protected from the destructive ambient radiation. Solar ultraviolet can induce photochemical degradation of organic compounds, but certain clays have been shown to preserve organic material. We examine how the SHERLOC instrument on the upcoming Mars 2020 mission will use deep-ultraviolet (UV) (248.6 nm) Raman and fluorescence spectroscopy to detect a plausible biosignature of adenosine 5'-monophosphate (AMP) adsorbed onto Ca-montmorillonite clay. We found that the spectral signature of AMP is not altered by adsorption in the clay matrix but does change with prolonged exposure to the UV laser over dosages equivalent to 0.2-6 sols of ambient martian UV. For pure AMP, UV exposure leads to breaking of the aromatic adenine unit, but in the presence of clay the degradation is limited to minor alteration with new Raman peaks and increased fluorescence consistent with formation of 2-hydroxyadenosine, while 1 wt % Mg perchlorate increases the rate of degradation. Our results confirm that clays are effective preservers of organic material and should be considered high-value targets, but that pristine biosignatures may be altered within 1 sol of martian UV exposure, with implications for Mars 2020 science operations and sample caching.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Adenosina Monofosfato , Percloratos , Espectrometría de Fluorescencia , Rayos Ultravioleta
18.
Sci Total Environ ; 784: 147099, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33895512

RESUMEN

Bulk atmospheric deposition samples, including wet and dry deposition, were collected during 2004-2006 in four high mountain European lakes: Skalnate Pleso (Tatra mountains, Slovakia), Gossenköllesee (Alps, Austria), Redon (Pyrenees, Spain), and Lochnagar (Grampian Mountains, Scotland). Samples were analysed for polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), endosulfans, and polybromodiphenyl ethers (PBDEs). The deposition of PCBs, HCHs, and low brominated BDEs reflected baseline contributions from long range atmospheric transport. This was also the case for PAHs in Redon and Gossenköllesee, endosulfans in Lochnagar and Gossenköllesee and HCB in these three lakes. However, Skalnate received PAHs, endosulfans, and HCB from regional sources as it was the case for endosulfans in Redon. The distinct origin of these pollutants was reflected in the relative composition of some metabolites such as the proportion of endosulfan sulfate vs α- and ß-endosulfans or the relative composition of BDE47 and BDE99. Wet deposition was the main process for atmospheric removal of PAHs, HCHs, and HCB. In addition, warm season revolatilization from soils and melting snow with subsequent condensation at low temperature were significant for volatile PAHs, HCB, low chlorinated PCBs, and endosulfans. Reaction with OH radicals was not a significant loss process of HCHs and HCB in remote areas, dominated by wet deposition, whereas PCBs and PAHs were significantly removed by both wet deposition and OH radical oxidation, the latter dominating in the highest altitude sites. Photolysis was the main atmospheric removal process of PBDEs, dominating over atmospheric deposition and OH depletion in all sites.

19.
Polymers (Basel) ; 13(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920500

RESUMEN

Natural rubber (NR), a long-chain hydrocarbon polymer mostly consisting of cis-1,4-polyisoprene units, has a high molecular weight (MW) and viscosity, enabling it to show excellent physical properties. However, NR has no reactive functional group, making it difficult to react with other molecules, especially in manufacturing processes. The functionalized low-molecular-weight NR (FLNR) is a requirement to disperse ingredients into the rubber adequately. Here, the FLNR was prepared by a photochemical degradation process under UVC-irradiation in the presence of H2O2 using P25-titanium oxide (TiO2) powder as a photocatalyst. The optimum condition for the preparation of FLNR was the use of 2.0 g of TiO2 powder per 100 g of rubber and H2O2 at 20% w/w under UVC-irradiation for 5 h. The hydroxyl groups were found on the NR chains due to the chain-scission of polyisoprene chains and hydroxyl radicals in the system. The weight average MW of NR decreased from 12.6 × 105 to 0.6 × 105 gmol-1, while the number average MW decreased from 3.3 × 105 to 0.1 × 105 gmol-1.

20.
Water Res ; 188: 116542, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33128979

RESUMEN

Comprehensive identification of byproducts including intermediate transformation products (TPs) of micropollutants in source water is challenging and paramount for assessment of drinking water quality and treatment technologies. Here, we have developed a nontargeted analysis strategy coupled with computational toxicity assessment to identify indistinguishable TPs including isomers with large differences in toxicity. The new strategy was applied to study the UV treatment of water containing micropollutant 2-mercaptobenzothiazole (2-MBT), and it enabled successful identification of a total of 22 organic TPs. Particularly, the structures of nine new TPs were identified for the first time; in addition, three isomers (P2, P3, and P4) were distinguished from the toxic contaminant 2-hydroxybenzothiazole (2-OH-BT). Computational assessments indicate that estrogenic activity of the three isomers (P2-P4) is higher than that of 2-OH-BT. Mass balance study shows that the 22 organic products accounted for 70% of the 2-MBT degraded, while 30% may degrade to inorganic products. Most TPs are resistant to UV photolysis. Computational toxicity assessment predicted the TPs to increase inhibition of human thyroperoxidase activity although they have lower aquatic toxicity compared to original 2-MBT. This study emphasizes the importance of monitoring the 2-MBT photodegradation products and the overall toxicity of finished water whose production included a UV light-based treatment process.


Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Benzotiazoles , Humanos , Fotólisis , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA