Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233365

RESUMEN

Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice. We found that LH/ZI RXFP3+ (LH/ZIRXFP3) cells projected strongly to fear learning, stress, and arousal centres, notably, the periaqueductal grey, lateral habenula, and nucleus reuniens. These cells do not express hypocretin/orexin or melanin-concentrating hormone but display putative efferent connectivity with LH hypocretin/orexin+ neurons and dopaminergic A13 cells. Following Pavlovian fear conditioning, chemogenetically activating LH/ZIRXFP3 cells reduced fear expression (freezing) overall but also induced jumping behaviour and increased locomotor activity. Therefore, the decreased freezing was more likely to reflect enhanced arousal rather than reduced fear. Indeed, stimulating these cells produced distinct patterns of coactivation between several motor, stress, and arousal regions, as measured by Fos expression. These results suggest that activating LH/ZIRXFP3 cells generates brain-wide activation patterns that augment behavioural arousal.

2.
J Neurochem ; 167(2): 204-217, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37674350

RESUMEN

There is much interest in identifying novel pharmacotherapeutic targets that improve clinical outcomes for the treatment of alcohol use disorder (AUD). One promising target for therapeutic intervention is the relaxin family peptide 3 (RXFP3) receptor, a cognate receptor for neuropeptide relaxin-3, which has previously been implicated in regulating alcohol drinking behavior. Recently, we developed the first small-molecule RXFP3-selective negative allosteric modulator (NAM) RLX-33. Therefore, the goal of the present work was to characterize the impact of this novel NAM on affective-related behaviors and alcohol self-administration in rats. First, the effects of RLX-33 were tested on alcohol and sucrose self-administration in Wistar and alcohol-preferring P rats to determine the dose-response profile and specificity for alcohol. Then, we assessed the effects of systemic RLX-33 injection in Wistar rats in a battery of behavioral assays (open-field test, elevated zero maze, acoustic startle response test, and prepulse inhibition) and tested for alcohol clearance. We found that the lowest effective dose (5 mg/kg) reduced alcohol self-administration in both male and female Wistar rats, while in alcohol-preferring P rats, this effect was restricted to males, and there were no effects on sucrose self-administration or general locomotor activity. The characterization of affective and metabolic effects in Wistar rats generally found few locomotor, affective, or alcohol clearance changes, particularly at the 5 mg/kg dose. Overall, these findings are promising and suggest that RXFP3 NAM has potential as a pharmacological target for treating AUD.


Asunto(s)
Alcoholismo , Relaxina , Ratas , Masculino , Femenino , Animales , Ratas Wistar , Reflejo de Sobresalto , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Etanol , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Sacarosa , Receptores de Péptidos
3.
J Neurosci ; 40(28): 5362-5375, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32532885

RESUMEN

Binge-eating disorder is the most common eating disorder. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3 (RLN3), which stimulates food intake in rats through the activation of the relaxin-family peptide-3 receptor (RXFP3). Here we demonstrate that a likely mechanism underlying the orexigenic action of RLN3 is RXFP3-mediated inhibition of oxytocin- and arginine-vasopressin-synthesizing paraventricular nucleus (PVN) magnocellular neurosecretory cells. Moreover, we reveal that, in male and female rats, this action depends on M-like potassium conductance. Notably, higher intra- and peri-PVN RLN3 fiber densities were observed in females, which may constitute an anatomic substrate for observed sex differences in binge-eating disorder. Finally, in a model of binge-eating in female rats, RXFP3 blockade within the PVN prevented binge-eating behavior. These data demonstrate a direct RLN3/RXFP3 action in the PVN of male and female rats, identify the associated ionic mechanisms, and reveal that hypothalamic RLN3/RXFP3 signaling regulates binge-eating behavior.SIGNIFICANCE STATEMENT Binge-eating disorder is the most common eating disorder worldwide, affecting women twice as frequently as men. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3, which acts via the relaxin-family peptide-3 receptor (RXFP3). Using a model of binge-eating, we demonstrated that relaxin-3/RXFP3 signaling in the hypothalamic paraventricular nucleus (PVN) is necessary for the expression of binge-eating behavior in female rats. Moreover, we elucidated the neuronal mechanism of RLN3/RXFP3 signaling in PVN in male and female rats and characterized sex differences in the RLN3 innervation of the PVN. These findings increase our understanding of the brain circuits and neurotransmitters involved in binge-eating disorder pathology and identify RXFP3 as a therapeutic target for binge-like eating disorders.


Asunto(s)
Bulimia/metabolismo , Conducta Alimentaria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Canales de Potasio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Transducción de Señal/fisiología , Animales , Conducta Animal/fisiología , Femenino , Masculino , Ratas , Caracteres Sexuales
4.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946593

RESUMEN

Relaxin/insulin-like family peptide receptor 3 (RXFP3) belongs to class A G protein-coupled receptor family. RXFP3 and its endogenous ligand relaxin-3 are mainly expressed in the brain with important roles in the regulation of appetite, energy metabolism, endocrine homeostasis and emotional processing. It is therefore implicated as a potential target for treatment of various central nervous system diseases. Since selective agonists of RXFP3 are restricted to relaxin-3 and its analogs, we conducted a high-throughput screening campaign against 32,021 synthetic and natural product-derived compounds using a cyclic adenosine monophosphate (cAMP) measurement-based method. Only one compound, WNN0109-C011, was identified following primary screening, secondary screening and dose-response studies. Although displayed agonistic effect in cells overexpressing the human RXFP3, it also showed cross-reactivity with the human RXFP4. This hit compound may provide not only a chemical probe to investigate the function of RXFP3/4, but also a novel scaffold for the development of RXFP3/4 agonists.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química
5.
J Biol Chem ; 293(41): 15777-15789, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30131340

RESUMEN

The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1-22R, which does not contain Trp27, used a non-native Arg23 residue to form cation-π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.


Asunto(s)
Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Relaxina/síntesis química , Relaxina/química , Electricidad Estática
6.
J Biol Chem ; 293(41): 15765-15776, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30131342

RESUMEN

The neuropeptide relaxin-3 and its receptor relaxin family peptide receptor-3 (RXFP3) play key roles in modulating behavior such as memory and learning, food intake, and reward seeking. A linear relaxin-3 antagonist (R3 B1-22R) based on a modified and truncated relaxin-3 B-chain was recently developed. R3 B1-22R is unstructured in solution; thus, the binding conformation and determinants of receptor binding are unclear. Here, we have designed, chemically synthesized, and pharmacologically characterized more than 60 analogues of R3 B1-22R to develop an extensive understanding of its structure-activity relationships. We show that the key driver for affinity is the nonnative C-terminal Arg23 Additional contributors to binding include amino acid residues that are important also for relaxin-3 binding, including Arg12, Ile15, and Ile19 Intriguingly, amino acid residues that are not exposed in native relaxin-3, including Phe14 and Ala17, also interact with RXFP3. We show that R3 B1-22R has a propensity to form a helical structure, and modifications that support a helical conformation are functionally well-tolerated, whereas helix breakers such as proline residues disrupt binding. These data suggest that the peptide adopts a helical conformation, like relaxin-3, upon binding to RXFP3, but that its smaller size allows it to penetrate deeper into the orthosteric binding site, creating more extensive contacts with the receptor.


Asunto(s)
Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Alanina/análogos & derivados , Alanina/síntesis química , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Humanos , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Conformación Proteica en Hélice alfa , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Relaxina/síntesis química , Relaxina/química , Relación Estructura-Actividad
7.
Bioorg Med Chem Lett ; 29(8): 991-994, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30824200

RESUMEN

The relaxin family peptide receptors have been implicated in numerous physiological processes including energy homeostasis, cardiac function, wound healing, and reproductive function. Two family members, RXFP3 and RXFP4, are class A GPCRs with endogenous peptide ligands (relaxin-3 and insulin-like peptide 5 (INSL5), respectively). Polymorphisms in relaxin-3 and RXFP3 have been associated with obesity, diabetes, and hypercholesterolemia. Moreover, central administration of relaxin-3 in rats has been shown to increase food intake, leading to body weight gain. Reported RXFP3 and RXFP4 ligands have been restricted to peptides (both endogenous and synthetic) as well as a low molecular weight positive allosteric modulator requiring a non-endogenous orthosteric ligand. Described here is the discovery of the first potent low molecular weight dual agonists of RXFP3/4. The scaffold identified is competitive with a chimeric relaxin-3/INSL5 peptide for RXFP3 binding, elicits similar downstream signaling as relaxin-3, and increases food intake in rats following acute central administration. This is the first report of small molecule RXFP3/4 agonism.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequeñas/química , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Descubrimiento de Drogas , Ligandos , Péptidos/química , Péptidos/farmacología , Ratas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/agonistas , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Relaxina/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Arch Biochem Biophys ; 646: 24-30, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29601823

RESUMEN

Relaxin family peptide receptor 3 (RXFP3) is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. As an A-class G protein-coupled receptor, RXFP3 is an integral plasma membrane protein with seven transmembrane domains, yet influence of the membrane lipids on its function remains unknown. In the present study, we disclosed that cholesterol, an essential membrane lipid for mammalian cells, modulated the binding properties of human RXFP3 with its ligands. We first demonstrated that depletion of cholesterol from host human embryonic kidney (HEK) 293T cells by methyl-ß-cyclodextrin altered ligand-binding properties of the overexpressed human RXFP3, such as increasing its binding potency with some antagonists and decreasing its binding affinity with a NanoLuc-conjugated R3/I5 tracer. Thereafter, we demonstrated that two B-chain residues, B5Tyr and B12Arg, were primarily responsible for the increased binding potency of these antagonists with human RXFP3 under the cholesterol depletion condition. Our results suggest that cell membrane cholesterol interacts with human RXFP3 and modulates its ligand-binding properties, providing new insights into the influence of membrane lipids on RXFP3 function.


Asunto(s)
Colesterol/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Secuencia de Aminoácidos , Arginina/química , Colesterol/deficiencia , Células HEK293 , Humanos , Ligandos , Péptidos Cíclicos/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Tirosina/química
9.
J Physiol ; 595(11): 3425-3447, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28098344

RESUMEN

KEY POINTS: Relaxin-3 is a stress-responsive neuropeptide that acts at its cognate receptor, RXFP3, to alter behaviours including feeding. In this study, we have demonstrated a direct, RXFP3-dependent, inhibitory action of relaxin-3 on oxytocin and vasopressin paraventricular nucleus (PVN) neuron electrical activity, a putative cellular mechanism of orexigenic actions of relaxin-3. We observed a Gαi/o -protein-dependent inhibitory influence of selective RXFP3 activation on PVN neuronal activity in vitro and demonstrated a direct action of RXFP3 activation on oxytocin and vasopressin PVN neurons, confirmed by their abundant expression of RXFP3 mRNA. Moreover, we demonstrated that RXFP3 activation induces a cadmium-sensitive outward current, which indicates the involvement of a characteristic magnocellular neuron outward potassium current. Furthermore, we identified an abundance of relaxin-3-immunoreactive axons/fibres originating from the nucleus incertus in close proximity to the PVN, but associated with sparse relaxin-3-containing fibres/terminals within the PVN. ABSTRACT: The paraventricular nucleus of the hypothalamus (PVN) plays an essential role in the control of food intake and energy expenditure by integrating multiple neural and humoral inputs. Recent studies have demonstrated that intracerebroventricular and intra-PVN injections of the neuropeptide relaxin-3 or selective relaxin-3 receptor (RXFP3) agonists produce robust feeding in satiated rats, but the cellular and molecular mechanisms of action associated with these orexigenic effects have not been identified. In the present studies, using rat brain slices, we demonstrated that relaxin-3, acting through its cognate G-protein-coupled receptor, RXFP3, hyperpolarized a majority of putative magnocellular PVN neurons (88%, 22/25), including cells producing the anorexigenic neuropeptides, oxytocin and vasopressin. Importantly, the action of relaxin-3 persisted in the presence of tetrodotoxin and glutamate/GABA receptor antagonists, indicating its direct action on PVN neurons. Similar inhibitory effects on PVN oxytocin and vasopressin neurons were produced by the RXFP3 agonist, RXFP3-A2 (82%, 80/98 cells). In situ hybridization histochemistry revealed a strong colocalization of RXFP3 mRNA with oxytocin and vasopressin immunoreactivity in rat PVN neurons. A smaller percentage of putative parvocellular PVN neurons was sensitive to RXFP3-A2 (40%, 16/40 cells). These data, along with a demonstration of abundant peri-PVN and sparse intra-PVN relaxin-3-immunoreactive nerve fibres, originating from the nucleus incertus, the major source of relaxin-3 neurons, identify a strong inhibitory influence of relaxin-3-RXFP3 signalling on the electrical activity of PVN oxytocin and vasopressin neurons, consistent with the orexigenic effect of RXFP3 activation observed in vivo.


Asunto(s)
Neuronas/metabolismo , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Transducción de Señal , Vasopresinas/metabolismo , Potenciales de Acción , Animales , Antagonistas del GABA/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiología , Potasio/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/farmacología , Tetrodotoxina/farmacología
10.
Hippocampus ; 27(5): 529-546, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28100033

RESUMEN

Hippocampus is innervated by γ-aminobutyric acid (GABA) "projection" neurons of the nucleus incertus (NI), including a population expressing the neuropeptide, relaxin-3 (RLN3). In studies aimed at gaining an understanding of the role of RLN3 signaling in hippocampus via its Gi/o -protein-coupled receptor, RXFP3, we examined the distribution of RLN3-immunoreactive nerve fibres and RXFP3 mRNA-positive neurons in relation to hippocampal GABA neuron populations. RLN3-positive elements were detected in close-apposition with a substantial population of somatostatin (SST)- and GABA-immunoreactive neurons, and a smaller population of parvalbumin- and calretinin-immunoreactive neurons in different hippocampal areas, consistent with the relative distribution patterns of RXFP3 mRNA and these marker transcripts. In light of the functional importance of the dentate gyrus (DG) hilus in learning and memory, and our anatomical data, we examined the possible influence of RLN3/RXFP3 signaling in this region on spatial memory. Using viral-based Cre/LoxP recombination methods and adult mice with a floxed Rxfp3 gene, we deleted Rxfp3 from DG hilar neurons and assessed spatial memory performance and affective behaviors. Following infusions of an AAV(1/2) -Cre-IRES-eGFP vector, Cre expression was observed in DG hilar neurons, including SST-positive cells, and in situ hybridization histochemistry for RXFP3 mRNA confirmed receptor depletion relative to levels in floxed-RXFP3 mice infused with an AAV(1/2) -eGFP (control) vector. RXFP3 depletion within the DG hilus impaired spatial reference memory in an appetitive T-maze task reflected by a reduced percentage of correct choices and increased time to meet criteria, relative to control. In a continuous spontaneous alternation Y-maze task, RXFP3-depleted mice made fewer alternations in the first minute, suggesting impairment of spatial working memory. However, RXFP3-depleted and control mice displayed similar locomotor activity, anxiety-like behavior in light/dark box and elevated-plus maze tests, and learning and long-term memory retention in the Morris water maze. These data indicate endogenous RLN3/RXFP3 signaling can modulate hippocampal-dependent spatial reference and working memory via effects on SST interneurons, and further our knowledge of hippocampal cognitive processing. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Memoria Espacial/fisiología , Animales , Ansiedad/metabolismo , Calbindina 2/metabolismo , Hipocampo/citología , Masculino , Aprendizaje por Laberinto/fisiología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones Transgénicos , Actividad Motora/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/citología , Parvalbúminas/metabolismo , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Somatostatina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Cell Tissue Res ; 370(2): 297-304, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28776188

RESUMEN

High glucose induces apoptosis of cardiomyocytes and fibrosis of cardiac fibroblasts, contributing to diabetic cardiomyopathy. In this work, we explore the production of relaxin alterations and the significance of their receptor system components in the hearts of experimental diabetic cardiomyopathy rats. We measured rat relaxin-1 (equivalent to human relaxin-2), relaxin-3, RXFP1 and RXFP3 mRNA expression in the hearts of experimental diabetic cardiomyopathy rats. Neonatal rat ventricular myocytes (NRVMs) and cardiac fibroblasts were treated with 5.5 mmol/l normal glucose (NG) and 33 mmol/l high glucose (HG) for 0, 6, 12, 24, 48 and 72 h. Rat relaxin-1, relaxin-3, RXFP1 and RXFP3 mRNA expression were determined by real-time PCR. In the present study, we offer the first evidence that Relaxin-1 mRNA significantly increased and Relaxin-3 mRNA expression decreased at 4 and 8 weeks after STZ in the hearts of diabetic rats. In addition, significant down regulation of the mRNA expression of RXFP1 and RXFP3 was observed at 4 w after STZ; however, the mRNA expression levels of RXFP1 and RXFP3 were increased at 8 weeks after STZ. Apoptotic NRVMs induced by high glucose generate a decreased level of relaxin-1 and RXFP1. In HG-administered cardiac fibroblasts, Relaxin-1 mRNA was significantly increased and relaxin-3 mRNA was significantly decreased. Additionally, the mRNA expression of RXFP1 was decreased, and the mRNA expression of RXFP3 was increased. This results showed that an important role of relaxin-2, relaxin-3 and their receptors system in the regulation of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/genética , Proteínas del Tejido Nervioso/genética , Precursores de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/patología , Regulación hacia Abajo , Fibrosis , Masculino , Miocardio/metabolismo , Miocardio/patología , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
12.
Amino Acids ; 49(5): 895-903, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28161795

RESUMEN

Relaxin family peptide receptor 3 (RXFP3) is an A-class G protein-coupled receptor that is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. To study its interaction with various ligands, we developed a novel bioluminescence resonance energy transfer (BRET)-based binding assay using the brightest NanoLuc as an energy donor and a newly developed cyan-excitable orange fluorescent protein (CyOFP) as an energy acceptor. An engineered CyOFP without intrinsic cysteine residues but with an introduced cysteine at the C-terminus was overexpressed in Escherichia coli and chemically conjugated to the A-chain N-terminus of an easily labeled chimeric R3/I5 peptide via an intermolecular disulfide linkage. After the CyOFP-conjugated R3/I5 bound to a shortened human RXFP3 (removal of 33 N-terminal residues) fused with the NanoLuc reporter at the N-terminus, high BRET signals were detected. Saturation binding and real-time binding assays demonstrated that this BRET pair retained high binding affinity with fast association/dissociation. Using this BRET pair, binding potencies of various ligands with RXFP3 were conveniently measured through competition binding assays. Thus, the novel BRET-based binding assay facilitates interaction studies of RXFP3 with various ligands. The engineered CyOFP without intrinsic cysteine residues may also be applied to other BRET-based binding assays in future studies.


Asunto(s)
Bioensayo , Vectores Genéticos/química , Ingeniería de Proteínas , Receptores Acoplados a Proteínas G/genética , Relaxina/genética , Unión Competitiva , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Ligandos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Unión Proteica , Señales de Clasificación de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relaxina/metabolismo
13.
Biochim Biophys Acta ; 1848(2): 688-94, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25434927

RESUMEN

Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Luciferasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Relaxina/metabolismo , Bioensayo , Membrana Celular/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Luciferasas/genética , Microscopía Fluorescente , Transporte de Proteínas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/genética , Relaxina/genética , Coloración y Etiquetado
14.
Arch Biochem Biophys ; 604: 113-20, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27353281

RESUMEN

Relaxin-3 is an insulin/relaxin superfamily neuropeptide involved in the regulation of food intake and stress response via activation of its cognate receptor RXFP3, an A-class G protein-coupled receptor (GPCR). In recent studies, a highly conserved ExxxD motif essential for binding of relaxin-3 has been identified at extracellular end of the second transmembrane domain (TMD2) of RXFP3. For most of the A-class GPCRs, a highly conserved negatively charged Asp residue (Asp(2.50) using Ballesteros-Weinstein numbering and Asp128 in human RXFP3) is present at the middle of TMD2. To elucidate function of the conserved transmembrane Asp128, in the present work we replaced it with other residues and the resultant RXFP3 mutants all retained quite high ligand-binding potency, but their activation and agonist-induced internalization were abolished or drastically decreased. Thus, the negatively charged transmembrane Asp128 controlled transduction of agonist-binding information from the extracellular region to the intracellular region through maintaining RXFP3 in a metastable state for efficient conformational change induced by binding of an agonist.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Relaxina/análogos & derivados , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Ligandos , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Relaxina/metabolismo
15.
Amino Acids ; 48(9): 2227-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27193232

RESUMEN

Relaxin-3 is an insulin/relaxin superfamily neuropeptide implicated in the regulation of food intake and stress response via activation of the G protein-coupled receptor RXFP3. Their electrostatic interactions have been recently identified, and involves three positively charged B-chain residues (B12Arg, B16Arg, and B26Arg) of relaxin-3 and two negatively charged residues (Glu141 and Asp145) in a highly conserved ExxxD motif at the extracellular end of the second transmembrane domain of RXFP3. To investigate their hydrophobic interactions, in the present work we deleted the highly conserved B-chain C-terminal B27Trp residue of relaxin-3, and mutated four highly conserved aromatic residues (Phe137, Trp138, Phe146, and Trp148) around the ExxxD motif of RXFP3. The resultant [∆B27W]relaxin-3 exhibited approximately tenfold lower binding potency and ~1000-fold lower activation potency towards wild-type RXFP3, confirming its importance for relaxin-3 function. Although the RXFP3 mutants could be normally trafficked to cell membrane, they had quite different activities. [F137A]RXFP3 could normally distinguish wild-type relaxin-3 and [∆B27W]relaxin-3 in binding and activation assays, whereas [W138A]RXFP3 lost most of this capability, suggesting that the Trp138 residue of RXFP3 forms hydrophobic interactions with the B27Trp residue of relaxin-3. The hydrophobic Trp138 residue and the formerly identified negatively charged Glu141 and Asp145 residues in the highly conserved WxxExxxD motif may thus form a functional surface that is important for interaction with relaxin-3. We hypothesize that the relaxin-3 B-chain C-terminus changes from the original folding-back conformation to an extended conformation during binding with RXFP3, to allow its B27Trp and B26Arg residues to interact with the Trp138 and Glu141 residues of RXFP3, respectively.


Asunto(s)
Pliegue de Proteína , Receptores Acoplados a Proteínas G/química , Relaxina/química , Secuencias de Aminoácidos , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Dominios Proteicos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo
16.
Neurochem Res ; 41(3): 610-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26294284

RESUMEN

Relaxin-3 is a neuropeptide that has roles in stress, memory and appetite regulation. The peptide acts on its cognate receptor RXFP3 to induce coupling to inhibitory G proteins to inhibit adenylyl cyclase and activate MAP-kinases such as ERK1/2, p38MAPK and JNK. Other relaxin family peptides can activate the receptor to produce alternative patterns of signalling and there is an allosteric modulator 135PAM1 that displays probe-selectivity. There are now a variety of selective peptide agonists and antagonists that will assist in the determination of the physiological roles of the relaxin-RXFP3 system and its potential as a drug target.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Regulación Alostérica , Animales , Arrestinas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Relaxina/metabolismo , Transducción de Señal , Activación Transcripcional , beta-Arrestinas
17.
Neurochem Res ; 41(3): 481-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26023064

RESUMEN

Methamphetamine (METH) is a highly addictive psychostimulant, and cessation of use is associated with reduced monoamine signalling, and increased anxiety/depressive states. Neurons expressing the neuropeptide, relaxin-3 (RLN3), and its cognate receptor, RXFP3, constitute a putative 'ascending arousal system', which shares neuroanatomical and functional similarities with serotonin (5-HT)/dorsal raphe and noradrenaline (NA)/locus coeruleus monoamine systems. In light of possible synergistic roles of RLN3 and 5-HT/NA, endogenous RLN3/RXFP3 signalling may compensate for the temporary reduction in monoamine signalling associated with chronic METH withdrawal, which could alter the profile of 'behavioural despair', bodyweight reductions, and increases in anhedonia and anxiety-like behaviours observed following chronic METH administration. In studies to test this theory, Rln3 and Rxfp3 knockout (KO) mice and their wildtype (WT) littermates were injected once daily with saline or escalating doses of METH (2 mg/kg, i.p. on day 1, 4 mg/kg, i.p. on day 2 and 6 mg/kg, i.p. on day 3-10). WT and Rln3 and Rxfp3 KO mice displayed an equivalent sensitivity to behavioural despair (Porsolt swim) during the 2-day METH withdrawal and similar bodyweight reductions on day 3 of METH treatment. Furthermore, during a 3-week period after the cessation of chronic METH exposure, Rln3 KO, Rxfp3 KO and corresponding WT mice displayed similar behavioural responses in paradigms that measured anxiety (light/dark box, elevated plus maze), anhedonia (saccharin preference), and social interaction. These findings indicate that a whole-of-life deficiency in endogenous RLN3/RXFP3 signalling does not markedly alter behavioural sensitivity to chronic METH treatment or withdrawal, but leave open the possibility of a more significant interaction with global or localised manipulations of this peptide system in the adult brain.


Asunto(s)
Estimulantes del Sistema Nervioso Central/efectos adversos , Metanfetamina/efectos adversos , Receptores Acoplados a Proteínas G/genética , Relaxina/genética , Síndrome de Abstinencia a Sustancias/psicología , Anhedonia/efectos de los fármacos , Animales , Ansiedad/genética , Ansiedad/psicología , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Ratones , Ratones Noqueados , Conducta Social , Síndrome de Abstinencia a Sustancias/genética
18.
Expert Opin Ther Pat ; 34(1-2): 71-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573177

RESUMEN

INTRODUCTION: The neuropeptide relaxin-3/RXFP3 system belongs to the relaxin/insulin superfamily and is involved in many important physiological processes, such as stress responses, appetite control, and motivation for reward. Although relaxin-3 is the endogenous agonist for RXFP3, it can also bind to and activate RXFP1 and RXFP4. Consequently, research has been focused on the development of RXFP3-specific peptides and small-molecule ligands to validate the relaxin-3/RXFP3 system as a novel drug target. AREAS COVERED: This review provides an overview of patents on the relaxin-3/RXFP3 system covering ligand development and pharmacological studies since 2003. Related patents and literature reports were obtained from established sources including SciFinder, Google Patents, and Espacenet for patents and SciFinder, PubMed, and Google Scholar for literature reports. EXPERT OPINION: There has been an increasing amount of patent activities around relaxin-3/RXFP3, highlighting the importance of this novel neuropeptide system for drug discovery. The development of relaxin-3 derived peptides and small-molecule modulators, as well as behavioral studies in rodents, have shown that the relaxin-3/RXFP3 system is a promising drug target for treating various metabolic and neuropsychiatric diseases including obesity, anxiety, and alcohol addiction.


Asunto(s)
Neuropéptidos , Relaxina , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Patentes como Asunto , Insulina/metabolismo , Receptores de Péptidos/agonistas , Receptores de Péptidos/metabolismo
19.
Biochem Pharmacol ; 224: 116239, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38679208

RESUMEN

Human insulin-like peptide 5 (INSL5) is a gut hormone produced by colonic L-cells, and its biological functions are mediated by Relaxin Family Peptide Receptor 4 (RXFP4). Our preliminary data indicated that RXFP4 agonists are potential drug leads for the treatment of constipation. More recently, we designed and developed a novel RXFP4 antagonist, A13-nR that was shown to block agonist-induced activity in cells and animal models. We showed that A13-nR was able to block agonist-induced increases in colon motility in mice of both genders that express the receptor, RXFP4. Our data also showed that colorectal propulsion induced by intracolonic administration of short-chain fatty acids was antagonized by A13-nR. Therefore, A13-nR is an important research tool and potential drug lead for the treatment of colon motility disorders, such as bacterial diarrhea. However, A13-nR acted as a partial agonist at high concentrations in vitro and demonstrated modest antagonist potency (∼35 nM). Consequently, the primary objective of this study is to pinpoint novel modifications to A13-nR that eliminate partial agonist effects while preserving or augmenting antagonist potency. In this work, we detail the creation of a series of A13-nR-modified analogues, among which analogues 3, 4, and 6 demonstrated significantly improved RXFP4 affinity (∼3 nM) with reduced partial agonist activity, enhanced antagonist potency (∼10 nM) and maximum agonist inhibition (∼80 %) when compared with A13-nR. These compounds have potential as candidates for further preclinical evaluations, marking a significant stride toward innovative therapeutics for colon motility disorders.


Asunto(s)
Insulina , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animales , Humanos , Ratones , Masculino , Receptores de Péptidos/metabolismo , Receptores de Péptidos/antagonistas & inhibidores , Receptores de Péptidos/agonistas , Insulina/metabolismo , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Células HEK293 , Ratones Endogámicos C57BL , Proteínas
20.
Biochem Pharmacol ; 224: 116238, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38677442

RESUMEN

INSL5 and relaxin-3 are relaxin family peptides with important roles in gut and brain function, respectively. They mediate their actions through the class A GPCRs RXFP4 and RXFP3. RXFP4 has been proposed to be a therapeutic target for colon motility disorders whereas RXFP3 targeting could be effective for neurological conditions such as anxiety. Validation of these targets has been limited by the lack of specific ligands and the availability of robust ligand-binding assays for their development. In this study, we have utilized NanoBiT complementation to develop a SmBiT-conjugated tracer for use with LgBiT-fused RXFP3 and RXFP4. The low affinity between LgBiT:SmBiT should result in a low non-specific luminescence signal and enable the quantification of binding without the tedious separation of non-bound ligands. We used solid-phase peptide synthesis to produce a SmBiT-labelled RXFP3/4 agonist, R3/I5, where SmBiT was conjugated to the B-chain N-terminus via a PEG12 linker. Both SmBiT-R3/I5 and R3/I5 were synthesized and purified in high purity and yield. Stable HEK293T cell lines expressing LgBiT-RXFP3 and LgBiT-RXFP4 were produced and demonstrated normal signaling in response to the synthetic R3/I5 peptide. Binding was first characterized in whole-cell binding kinetic assays validating that the SmBiT-R3/I5 bound to both cell lines with nanomolar affinity with minimal non-specific binding without bound and free SmBiT-R3/I5 separation. We then optimized membrane binding assays, demonstrating easy and robust analysis of both saturation and competition binding from frozen membranes. These assays therefore provide an appropriate rigorous binding assay for the high-throughput analysis of RXFP3 and RXFP4 ligands.


Asunto(s)
Proteínas , Receptores Acoplados a Proteínas G , Receptores de Péptidos , Relaxina , Relaxina/metabolismo , Relaxina/química , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Células HEK293 , Receptores de Péptidos/metabolismo , Receptores de Péptidos/genética , Proteínas/metabolismo , Proteínas/química , Insulina/metabolismo , Unión Proteica/fisiología , Péptidos/metabolismo , Péptidos/química , Péptidos/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA