Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(7): 1372-1382.e4, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35240057

RESUMEN

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.


Asunto(s)
ADN Helicasas , Replicación del ADN , Cromatina/genética , Cromosomas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo
2.
Trends Genet ; 38(10): 987-988, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35643778

RESUMEN

Claussin et al. introduce Replicon-seq, a new genome-wide DNA sequencing technology that monitors the progression of individual replisomes at high resolution in vivo.


Asunto(s)
Replicación del ADN , Replicón , ADN , ADN Helicasas/metabolismo , Replicón/genética
3.
J Virol ; 98(7): e0050424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38899934

RESUMEN

Animal models of authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require operation in biosafety level 3 (BSL-3) containment. In the present study, we established a mouse model employing a single-cycle infectious virus replicon particle (VRP) system of SARS-CoV-2 that can be safely handled in BSL-2 laboratories. The VRP [ΔS-VRP(G)-Luc] contains a SARS-CoV-2 genome in which the spike gene was replaced by a firefly luciferase (Fluc) reporter gene (Rep-Luci), and incorporates the vesicular stomatitis virus glycoprotein on the surface. Intranasal inoculation of ΔS-VRP(G)-Luc can successfully transduce the Rep-Luci genome into mouse lungs, initiating self-replication of Rep-Luci and, accordingly, inducing acute lung injury mimicking the authentic SARS-CoV-2 pathology. In addition, the reporter Fluc expression can be monitored using a bioluminescence imaging approach, allowing a rapid and convenient determination of viral replication in ΔS-VRP(G)-Luc-infected mouse lungs. Upon treatment with an approved anti-SARS-CoV-2 drug, VV116, the viral replication in infected mouse lungs was significantly reduced, suggesting that the animal model is feasible for antiviral evaluation. In summary, we have developed a BSL-2-compliant mouse model of SARS-CoV-2 infection, providing an advanced approach to study aspects of the viral pathogenesis, viral-host interactions, as well as the efficacy of antiviral therapeutics in the future.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and pathogenic in humans; thus, research on authentic SARS-CoV-2 has been restricted to biosafety level 3 (BSL-3) laboratories. However, due to the scarcity of BSL-3 facilities and trained personnel, the participation of a broad scientific community in SARS-CoV-2 research had been greatly limited, hindering the advancement of our understanding on the basic virology as well as the urgently necessitated drug development. Previously, our colleagues Jin et al. had generated a SARS-CoV-2 replicon by replacing the essential spike gene in the viral genome with a Fluc reporter (Rep-Luci), which can be safely operated under BSL-2 conditions. By incorporating the Rep-Luci into viral replicon particles carrying vesicular stomatitis virus glycoprotein on their surface, and via intranasal inoculation, we successfully transduced the Rep-Luci into mouse lungs, developing a mouse model mimicking SARS-CoV-2 infection. Our model can serve as a useful platform for SARS-CoV-2 pathological studies and antiviral evaluation under BSL2 containment.


Asunto(s)
Antivirales , COVID-19 , Modelos Animales de Enfermedad , Genes Reporteros , SARS-CoV-2 , Replicación Viral , Animales , SARS-CoV-2/fisiología , SARS-CoV-2/genética , Ratones , COVID-19/virología , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Pulmón/virología , Pulmón/patología , Betacoronavirus/fisiología , Betacoronavirus/genética , Neumonía Viral/virología , Infecciones por Coronavirus/virología , Contención de Riesgos Biológicos , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Femenino , Ratones Endogámicos BALB C , Chlorocebus aethiops , Replicón , Células Vero , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo
4.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38236006

RESUMEN

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Asunto(s)
Antivirales , Coronavirus Felino , Peritonitis Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfónicos , Animales , Gatos , Antivirales/farmacología , Coronavirus Felino/efectos de los fármacos , Peritonitis Infecciosa Felina/tratamiento farmacológico , Lactamas/farmacología , Leucina/análogos & derivados , ARN , Ácidos Sulfónicos/farmacología
5.
Mol Ther ; 32(8): 2519-2534, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38894543

RESUMEN

Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.


Asunto(s)
Alphavirus , Recombinación Genética , Vacunas de ARNm , Animales , Ratones , Alphavirus/genética , Alphavirus/inmunología , Ratones Endogámicos C57BL , Humanos , Receptor de Interferón alfa y beta/genética , Replicación Viral , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/efectos adversos , Ratones Noqueados , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/efectos adversos
6.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37877718

RESUMEN

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Asunto(s)
Alphavirus , Regulación Viral de la Expresión Génica , Interacciones Microbiota-Huesped , Replicón , Proteínas Virales , Alphavirus/genética , Alphavirus/metabolismo , Vacunas de ARNm/genética , Replicón/genética , Replicación Viral/genética , ARN Viral/biosíntesis , ARN Viral/genética , Interacciones Microbiota-Huesped/genética , Proteínas Virales/biosíntesis , Proteínas Virales/genética
7.
Appl Environ Microbiol ; : e0157924, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39475288

RESUMEN

Salmonella Minnesota has emerged in Brazil as the predominant serovar in poultry and poultry products, along with Salmonella Heidelberg. To understand the emergence of Salmonella Minnesota over the last few years in Brazil, we performed a comparative analysis between 69 selected S. Minnesota genomes from Pathogen Detection database and 65 clonal emergent genomes isolated from Brazil. We demonstrate the presence of multidrug resistance genes against tetracycline [tet(A)], sulfonamide (sul2), and AmpC beta-lactamase (blaCMY-2) in emergent genomes, along with the carriage of a megaplasmid of resistance and virulence (~210 kb), designated pESM (plasmid for emergent Salmonella Minnesota). pESM is an IncC/A2 plasmid predicted to increase S. Minnesota environmental tolerance to mercury (mer operon) and provide resistance to tetracycline and ampicillin due to the presence of tet(A) and blaCMY-2, respectively. Moreover, pESM carries the yersiniabactin siderophore (high-pathogenicity island of Yersinia) related to the iron uptake. The temporal inference demonstrated that the most recent common ancestor dated from ~1978 and that the clonal emergent genomes carrying the pESM belong to a completely different lineage of S. Minnesota. Our results indicate that the presence of pESM likely contributes to the emergence of S. Minnesota and is precisely related to the successful spread of this particular clonal lineage in Brazil.IMPORTANCESalmonella Minnesota has emerged in Brazil as one of the leading serovars related to human and animal infection, presenting high virulence and antibiotic resistance to drugs classified as the highest priority for clinical treatment in humans. This study performed whole-genome sequencing, temporal analysis, and phylogenetics to understand the genetic insights related to the emergence of Salmonella Minnesota in Brazil. Long-read sequencing has led to the identification and characterization of a unique megaplasmid carrying virulence, antibiotic resistance, and heavy-metal tolerance genes, which may play a central role in S. Minnesota's successful emergence in Brazil and possibly worldwide. The potentially high transmissibility of this plasmid between clones and serovars represents a risk to public health since its acquisition may increase Salmonella's fitness, virulence, resistance, and persistence. Understanding the genetic aspects related to the emergence of serovars can help devise measures to mitigate the spread of hazardous multidrug-resistant strains.

8.
J Med Virol ; 96(3): e29547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511574

RESUMEN

We have previously developed a bacterial artificial chromosome (BAC)-vectored SARS-CoV-2 replicon, namely BAC-CoV2-Rep, which, upon transfection into host cells, serves as a transcription template for SARS-CoV-2 replicon mRNA to initiate replicon replication and produce nanoluciferase (Nluc) reporter from the subgenomic viral mRNA. However, an inherent issue of such DNA-launched replicon system is that the nascent full-length replicon transcript undergoes process by host RNA splicing machinery, which reduces replicon replication and generates spliced mRNA species expressing NLuc reporter independent of replicon replication. To mitigate this problem, we employed Isoginkgetin, a universal eukaryotic host splicing inhibitor, to treat cells transfected with BAC-CoV2-Rep. Isoginkgetin effectively increased the level of full-length replicon transcripts while concurrently reducing the level of Nluc signal derived from spliced replicon mRNA, making the Nluc reporter signal more correlated with replicon replication, as evidenced by treatment with known SARS-CoV-2 replication inhibitors including Remdesivir, GC376, and EIDD-1931. Thus, our study emphasizes that host RNA splicing is a confounding factor for DNA-launched SARS-CoV-2 replicon systems, which can be mitigated by Isoginkgetin treatment.


Asunto(s)
Biflavonoides , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Replicón , ARN Mensajero , Replicación Viral
9.
J Med Virol ; 96(1): e29376, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38235850

RESUMEN

Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.


Asunto(s)
Virus de los Bosques Semliki , Virus Sindbis , Ratones , Animales , Virus de los Bosques Semliki/genética , Virus Sindbis/genética , Plásmidos/genética , Replicón , Luciferasas/genética , Vectores Genéticos
10.
Arch Biochem Biophys ; 759: 110111, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39111614

RESUMEN

Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 µM, ∼161.3 µM, and ∼3.83 µM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 µM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.


Asunto(s)
Antivirales , Virus Chikungunya , Metiltransferasas , Antivirales/farmacología , Antivirales/química , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Virus Chikungunya/efectos de los fármacos , Animales , Sulfonamidas/farmacología , Sulfonamidas/química , Humanos , Piridazinas/farmacología , Piridazinas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Replicación Viral/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/química , Bencilisoquinolinas
11.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709860

RESUMEN

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Asunto(s)
Proteínas de la Cápside , ARN Mensajero , Virus del Mosaico del Tabaco , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones , Virus del Mosaico del Tabaco/genética , Proteínas de la Cápside/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Femenino , Vacunas contra la COVID-19/administración & dosificación , Virión/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Vacunas de Partículas Similares a Virus/administración & dosificación , Liposomas
12.
Vet Res ; 55(1): 124, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334482

RESUMEN

Feline infectious peritonitis (FIP) is a lethal, immune-mediated disease in cats caused by feline infectious peritonitis virus (FIPV), a biotype of feline coronavirus (FCoV). In contrast to feline enteric coronavirus (FECV), which exclusively infects enterocytes and causes diarrhea, FIPV specifically targets macrophages, resulting in the development of FIP. The transmission and infection mechanisms of this complex, invariably fatal disease remain unclear, with no effective vaccines or approved drugs for its prevention or control. In this study, a full-length infectious cDNA clone of the wild-type FIPV WSU79-1149 strain was constructed to generate recombinant FIPV (rFIPV-WT), which exhibited similar growth kinetics and produced infectious virus titres comparable to those of the parental wild-type virus. In addition, the superfold green fluorescent protein (msfGFP) and Renilla luciferase (Rluc) reporter genes were incorporated into the rFIPV-WT cDNA construct to generate reporter rFIPV-msfGFP and rFIPV-Rluc viruses. While the growth characteristics of the rFIPV-msfGFP virus were similar to those of its parental rFIPV-WT, the rFIPV-Rluc virus replicated more slowly, resulting in the formation of smaller plaques than did the rFIPV-WT and rFIPV-msfGFP viruses. In addition, by replacing the S, E, M, and ORF3abc genes with msfGFP and Rluc genes, the replicon systems repFIPV-msfGFP and repFIPV-Rluc were generated on the basis of the cDNA construct of rFIPV-WT. Last, the use of reporter recombinant viruses and replicons in antiviral screening assays demonstrated their high sensitivity for quantifying the antiviral effectiveness of the tested compounds. This integrated system promises to significantly streamline the investigation of virus replication within host cells, enabling efficient screening for anti-FIPV compounds and evaluating emerging drug-resistant mutations within the FIPV genome.


Asunto(s)
Coronavirus Felino , Peritonitis Infecciosa Felina , Genética Inversa , Coronavirus Felino/genética , Coronavirus Felino/fisiología , Genética Inversa/métodos , Animales , Gatos , Peritonitis Infecciosa Felina/virología , Antivirales/farmacología , Línea Celular , Replicación Viral , ADN Complementario/genética
13.
BMC Infect Dis ; 24(1): 1076, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350079

RESUMEN

BACKGROUND: Viral neutralization (NT) assays can be used to determine the immune status of patients or assess the potency of candidate vaccines or therapeutic monoclonal antibodies (mAbs). Focus reduction neutralization test (FRNT) is a conventional neutralization test (cVNT) with superior specificity for measurement of neutralizing antibodies against a specific virus. Unfortunately, the application of FRNT to the chikungunya virus (CHIKV) involves a highly pathogenic bio-agent requiring biosafety level 3 (BSL3) facilities, which inevitably imposes high costs and limits accessibility. In this study, we evaluated a safe surrogate virus neutralization test (sVNT) that uses novel CHIKV replicon particles (VRPs) expressing eGFP and luciferase (Luc) to enable the rapid detection and quantification of neutralizing activity in clinical human serum samples. METHODS: This unmatched case-control validation study used serum samples from laboratory-confirmed cases of CHIKV (n = 19), dengue virus (DENV; n = 9), Japanese encephalitis virus (JEV; n = 5), and normal individuals (n = 20). We evaluated the effectiveness of sVNT, based on mosquito cell-derived CHIK VRPs (mos-CHIK VRPs), in detecting (eGFP) and quantifying (Luc) neutralizing activity, considering specificity, sensitivity, and reproducibility. We conducted correlation analysis between the proposed rapid method (20 h) versus FRNT assay (72 h). We also investigated the correlation between sVNT and FRNT in NT titrations in terms of Pearson's correlation coefficient (r) and sigmoidal curve fitting. RESULTS: In NT screening assays, sVNT-eGFP screening achieved sensitivity and specificity of 100%. In quantitative neutralization assays, we observed a Pearson's correlation coefficient of 0.83 for NT50 values between sVNT-Luc and FRNT. CONCLUSIONS: Facile VRP-based sVNT within 24 h proved highly reliable in the identification and quantification of neutralizing activity against CHIKV in clinical serum samples.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Fiebre Chikungunya , Virus Chikungunya , Pruebas de Neutralización , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Virus Chikungunya/inmunología , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pruebas de Neutralización/métodos , Animales , Estudios de Casos y Controles , Sensibilidad y Especificidad
14.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467395

RESUMEN

AIMS: The primary objective of this study was to analyze antimicrobial resistance (AMR), with a particular focus on ß-lactamase genotypes and plasmid replicon types of Shiga toxin-producing Escherichia coli (STEC) strains originating from various animal hosts. METHODS AND RESULTS: A total of 84 STEC strains were isolated from cattle (n = 32), sheep/goats (n = 26), pigeons (n = 20), and wild animals (n = 6) between 2010 and 2018 in various regions of Iran. The Kirby-Bauer susceptibility test and multiple polymerase chain reaction (PCR) panels were employed to elucidate the correlation between AMR and plasmid replicon types in STEC isolates. The predominant replicon types were IncFIC and IncFIB in cattle (46.8%), IncFIC in sheep/goats (46.1%), IncA/C in pigeons (90%), and IncP in wild animals (50%). STEC of serogroups O113, O26, and O111 harbored the IncFIB (100%), IncI1 (80%), and IncFIC + IncA/C (100%) plasmids, respectively. A remarkable AMR association was found between ciprofloxacin (100%), neomycin (68.7%), and tetracycline (61.7%) resistance with IncFIC; amoxicillin + clavulanic acid (88.8%) and tetracycline (61.7%) with IncA/C; ciprofloxacin (100%) with IncFIB; fosfomycin (85.7%) and sulfamethoxazole + trimethoprim (80%) with IncI1. IncI1 appeared in 83.3%, 50%, and 100% of the isolates harboring blaCTX-M, blaTEM, and blaOXA ß-lactamase genes, respectively. CONCLUSIONS: The emergence of O26/IncI1/blaCTX-M STEC in cattle farms poses a potential risk to public health.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Ovinos , Antibacterianos/farmacología , beta-Lactamasas/genética , Infecciones por Escherichia coli/veterinaria , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Resistencia betalactámica , Ciprofloxacina , Genotipo , Cabras , Tetraciclinas , Proteínas de Escherichia coli/genética
15.
Ann Clin Microbiol Antimicrob ; 23(1): 19, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402160

RESUMEN

OBJECTIVE: In our study, K. pneumoniae strains (non-susceptible to carbapenem) (n = 60) were obtained from various clinical samples from Rize State Hospital between 2015 and 2017 and it is aimed to identify antibiotic resistance genes and replicon typing. METHODS: Antibiotic susceptibility tests of the strains were performed with Kirby-Bauer disk diffusion test and the Vitek-2 automated system (BioMerieux, France). Antibiotic resistance genes and replicon typing was characterized by PCR method. RESULTS: It was determined that K. pneumaniae isolates were mostly isolated from the samples of the intensive care unit. All of the K. pneumoniae strains examined in this study were found to be ampicillin/sulbactam and ertapenem resistant but colistin susceptible. Amoxacillin/clavulonic acid resistance was detected at 98.14% of strains. The blaOXA-48 gene was mostly detected in isolates. The most common type of plasmid was I1 and 3 different plasmid types were found in five different strains together. CONCLUSION: This study also shows that the distribution of NDM-1 and OXA-48 carbapenemases has increased since the first co-display in Türkiye and that IncHI1 is the first record in our country. This study provides an overview of the major plasmid families occurring in multiple antibiotic-resistant strains of K. pneumoniae. To our knowledge, this study represents the first report of IncHI1 record in Türkiye.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Antibacterianos/farmacología , beta-Lactamasas/genética , Carbapenémicos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Replicón
16.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686605

RESUMEN

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , ARN Viral/administración & dosificación , Replicón , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Virus Defectuosos/genética , Virus Defectuosos/inmunología , Femenino , Eliminación de Gen , Genes env , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , ARN Viral/genética , ARN Viral/inmunología , Vacunas de ADN , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Virulencia/genética , Virulencia/inmunología
17.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33766889

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and antiviral discovery are hampered by the lack of a cell-based virus replication system that can be readily adopted without biosafety level 3 (BSL-3) restrictions. Here, the construction of a noninfectious SARS-CoV-2 reporter replicon and its application in deciphering viral replication mechanisms and evaluating SARS-CoV-2 inhibitors are presented. The replicon genome is replication competent but does not produce progeny virions. Its replication can be inhibited by RdRp mutations or by known SARS-CoV-2 antiviral compounds. Using this system, a high-throughput antiviral assay has also been developed. Significant differences in potencies of several SARS-CoV-2 inhibitors in different cell lines were observed, which highlight the challenges of discovering antivirals capable of inhibiting viral replication in vivo and the importance of testing compounds in multiple cell culture models. The generation of a SARS-CoV-2 replicon provides a powerful platform to expand the global research effort to combat COVID-19.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Ensayos Analíticos de Alto Rendimiento/métodos , Replicón/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Células HEK293 , Humanos , Replicón/genética , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos
18.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063100

RESUMEN

The Semliki Forest virus capsid protein (C) is an RNA binding protein which exhibits both specific and unspecific affinities to single-strand nucleic acids. The putative use of the self-amplifying RNAs (saRNAs) of alphaviruses for biotechnological purpose is one of the main studied strategies concerning RNA-based therapies or immunization. In this work, a recombinant C protein from SFV was expressed and purified from bacteria and used to associate in vitro with a saRNA derived from SFV. Results showed that the purified form of C protein can associate with the saRNA even after high temperature treatment. The C protein was associated with a modified saRNA coding for the green fluorescent protein (GFP) and delivered to murine macrophage cells which expressed the GFP, showing that the saRNA was functional after being associated with the recombinant purified C protein.


Asunto(s)
Proteínas de la Cápside , Macrófagos , ARN Viral , Proteínas Recombinantes , Virus de los Bosques Semliki , Virus de los Bosques Semliki/genética , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/virología , Proteínas Recombinantes/genética , ARN Viral/genética , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
19.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125914

RESUMEN

Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.


Asunto(s)
Alelos , Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Plásmidos , Enfermedades de las Aves de Corral , Replicón , Animales , Pollos/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Replicón/genética , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Enfermedades de las Aves de Corral/microbiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Salmonella/genética , Salmonella/efectos de los fármacos
20.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396699

RESUMEN

Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2'R)-2'-Deoxy-2'-fluoro-2'-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection.


Asunto(s)
Hepatitis C , Sofosbuvir , Animales , Cricetinae , Chlorocebus aethiops , Humanos , Sofosbuvir/farmacología , Antivirales/farmacología , Células Vero , ARN Polimerasa Dependiente del ARN , Replicación Viral , Hepacivirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA