Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemosphere ; 308(Pt 1): 136253, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057347

RESUMEN

Sulfidated nano zero-valent iron (S-nZVI) was used to remove various pollutants from wastewater. However, the instability, poor dispersibility, and low electron transfer efficiency of S-nZVI limit its application. Herein, graphene oxide supported sulfidated nano zero-valent iron (S-nZVI@GO) was successfully synthesized using graphene oxide (GO) as a carrier. The properties of S-nZVI@GO were characterized by scanning electron microscopy coupled to X-ray photoelectron spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) concerning the surface morphology, crystalline structure, and elemental components. S-nZVI@GO displayed an excellent capacity for antimony (Sb) removal under aerobic conditions (96.7%), with a high adsorption capacity (Qmax = 311.75 mg/g). It maintained a high removal rate (over 90%) during a wide pH range (3-9). More importantly, S-nZVI@GO activated the molecular oxygen in water via a single-electron pathway to produce •O2- and H2O2, and then oxidized trivalent antimony (Sb(III)) to pentavalent antimony (Sb(V)) and further separated it by synergistic adsorption and co-precipitation. Therefore, S-nZVI@GO shows excellent potential for Sb contamination remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA