Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442410

RESUMEN

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Variación Genética , Genoma de Planta , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Especificidad de la Especie
2.
Cell ; 176(3): 663-675.e19, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661756

RESUMEN

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity.


Asunto(s)
Frecuencia de los Genes/genética , Genoma Humano/genética , Variación Estructural del Genoma/genética , Alelos , Eucromatina/genética , Genómica/métodos , Humanos , Repeticiones de Minisatélite/genética , Análisis de Secuencia de ADN/métodos
3.
Plant J ; 114(6): 1490-1505, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36971060

RESUMEN

Australian pine (Casuarina spp.) is extensively planted in tropical and subtropical regions for wood production, shelterbelts, environmental protection, and ecological restoration due to their superior biological characteristics, such as rapid growth, wind and salt tolerance, and nitrogen fixation. To analyze the genomic diversity of Casuarina, we sequenced the genomes and constructed de novo genome assemblies of the three most widely planted Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. We generated chromosome-scale genome sequences using both Pacific Biosciences (PacBio) Sequel sequencing and chromosome conformation capture technology (Hi-C). The total genome sizes for C. equisetifolia, C. glauca, and C. cunninghamiana are 268 942 579 bp, 296 631 783 bp, and 293 483 606 bp, respectively, of which 25.91, 27.15, and 27.74% were annotated as repetitive sequences. We annotated 23 162, 24 673, and 24 674 protein-coding genes in C. equisetifolia, C. glauca, and C. cunninghamiana, respectively. We then collected branchlets from male and female individuals for whole-genome bisulfite sequencing (BS-seq) to explore the epigenetic regulation of sex determination in these three species. Transcriptome sequencing (RNA-seq) revealed differential expression of phytohormone-related genes between male and female plants. In summary, we generated three chromosome-level genome assemblies and comprehensive DNA methylation and transcriptome datasets from both male and female material for three Casuarina species, providing a basis for the comprehensive investigation of genomic diversity and functional gene discovery of Casuarina in the future.


Asunto(s)
Cromosomas , Epigénesis Genética , Australia , Secuencia de Bases , Secuencias Repetitivas de Ácidos Nucleicos , Anotación de Secuencia Molecular
4.
J Med Virol ; 96(5): e29652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727029

RESUMEN

Human papillomavirus (HPV) genotyping is widely used, particularly in combination with high-risk (HR) HPV tests for cervical cancer screening. We developed a genotyping method using sequences of approximately 800 bp in the E6/E7 region obtained by PacBio single molecule real-time sequencing (SMRT) and evaluated its performance against MY09-11 L1 sequencing and after the APTIMA HPV genotyping assay. The levels of concordance of PacBio E6/E7 SMRT sequencing with MY09-11 L1 sequencing and APTIMA HPV genotyping were 100% and 90.8%, respectively. The sensitivity of PacBio E6/EA7 SMRT was slightly greater than that of L1 sequencing and, as expected, lower than that of HR-HPV tests. In the context of cervical cancer screening, PacBio E6/E7 SMRT is then best used after a positive HPV test. PacBio E6/E7 SMRT genotyping is an attractive alternative for HR and LR-HPV genotyping of clinical samples. PacBio SMRT sequencing provides unbiased genotyping and can detect multiple HPV infections and haplotypes within a genotype.


Asunto(s)
Genotipo , Técnicas de Genotipaje , Papillomaviridae , Infecciones por Papillomavirus , Humanos , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/diagnóstico , Femenino , Técnicas de Genotipaje/métodos , Papillomaviridae/genética , Papillomaviridae/clasificación , Papillomaviridae/aislamiento & purificación , Sensibilidad y Especificidad , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/diagnóstico , Análisis de Secuencia de ADN/métodos , Detección Precoz del Cáncer/métodos , Proteínas Oncogénicas Virales/genética , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Bull Entomol Res ; 114(2): 190-202, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328866

RESUMEN

Reticulitermes chinensis Snyder is an important pest in forestry and construction and is widely distributed in China. We found that Serratia marcescens Bizio strain SM1 has insecticidal activity to R. chinensis, but the pathogenic mechanism of SM1 to R. chinensis is not clear. Therefore, full-length transcriptome sequencing was performed on R. chinensis infected with SM1 and the control group. A total of 230 differentially expressed genes were identified by comparing SM1 infection group and the control group, among which 103 were downregulated and 127 were upregulated. We found downregulated genes in nine metabolic pathway categories, among which carbohydrate metabolism had the most downregulated genes, followed by energy metabolism and amino acid metabolism. We also found that some downregulated genes were related to pattern recognition receptors, cellular immunity, and humoral immunity, indicating that R. chinensis immunity was negatively affected by SM1 infection. In addition, some genes in signal transduction and genetic information processing pathways were downregulated. In this study, high-throughput full-length transcriptome analysis was used to analyse the pathogenic mechanism of SM1 to R. chinensis. The results of this study provide useful information for exploring the relationship between SM1 and R. chinensis, and provide theoretical support for the future application of SM1 and the prevention and treatment of R. chinensis.


Asunto(s)
Serratia marcescens , Transcriptoma , Serratia marcescens/genética , Animales , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/genética , Mariposas Nocturnas/inmunología , Perfilación de la Expresión Génica
6.
Food Microbiol ; 123: 104566, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038883

RESUMEN

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Asunto(s)
Bacterias , Fermentación , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , China , Microbiota , Filogenia , ADN Bacteriano/genética , Biodiversidad , Bebidas Alcohólicas/microbiología , Bebidas Alcohólicas/análisis , Microbiología de Alimentos , Metagenoma , Alimentos Fermentados/microbiología
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673724

RESUMEN

As a highly economic berry fruit crop, blueberry is enjoyed by most people and has various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids. To obtain more accurate and comprehensive transcripts, the full-length transcriptome of half-highbush blueberry (Vaccinium corymbosum/angustifolium cultivar Northland) obtained using single molecule real-time and next-generation sequencing technologies was reported for the first time. Overall, 147,569 consensus transcripts (average length, 2738 bp; N50, 3176 bp) were obtained. After quality control steps, 63,425 high-quality isoforms were obtained and 5030 novel genes, 3002 long non-coding RNAs, 3946 transcription factor genes (TFs), 30,540 alternative splicing events, and 2285 fusion gene pairs were identified. To better explore the molecular mechanism of flavonoid biosynthesis in mature blueberry fruit, an integrative analysis of the metabolome and transcriptome was performed on the exocarp, sarcocarp, and seed. A relatively complete biosynthesis pathway map of phenylpropanoids, flavonoids, and proanthocyanins in blueberry was constructed. The results of the joint analysis showed that the 228 functional genes and 42 TFs regulated 78 differentially expressed metabolites within the biosynthesis pathway of phenylpropanoids/flavonoids. O2PLS analysis results showed that the key metabolites differentially accumulated in blueberry fruit tissues were albireodelphin, delphinidin 3,5-diglucoside, delphinidin 3-O-rutinoside, and delphinidin 3-O-sophoroside, and 10 structural genes (4 Vc4CLs, 3 VcBZ1s, 1 VcUGT75C1, 1 VcAT, and 1 VcUGAT), 4 transporter genes (1 VcGSTF and 3 VcMATEs), and 10 TFs (1 VcMYB, 2 VcbHLHs, 4 VcWD40s, and 3 VcNACs) exhibited strong correlations with 4 delphinidin glycosides. These findings provide insights into the molecular mechanisms of flavonoid biosynthesis and accumulation in blueberry fruit.


Asunto(s)
Arándanos Azules (Planta) , Flavonoides , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Arándanos Azules (Planta)/genética , Arándanos Azules (Planta)/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vías Biosintéticas/genética
8.
Plant J ; 109(1): 278-294, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713513

RESUMEN

European mistletoe (Viscum album) is a hemiparasitic flowering plant that is known for its very special life cycle and extraordinary biochemical properties. Particularly, V. album has an unusual mode of cellular respiration that takes place in the absence of mitochondrial complex I. However, insights into the molecular biology of V. album so far are very limited. Since the genome of V. album is extremely large (estimated 600 times larger than the genome of the model plant Arabidopsis thaliana) it has not been sequenced up to now. We here report sequencing of the V. album gene space (defined as the space including and surrounding genic regions, encompassing coding as well as 5' and 3' non-coding regions). mRNA fractions were isolated from different V. album organs harvested in summer or winter and were analyzed via single-molecule real-time sequencing. We determined sequences of 39 092 distinct open reading frames encoding 32 064 V. album proteins (designated V. album protein space). Our data give new insights into the metabolism and molecular biology of V. album, including the biosynthesis of lectins and viscotoxins. The benefits of the V. album gene space information are demonstrated by re-evaluating mass spectrometry-based data of the V. album mitochondrial proteome, which previously had been evaluated using the A. thaliana genome sequence. Our re-examination allowed the additional identification of nearly 200 mitochondrial proteins, including four proteins related to complex I, which all have a secondary function not related to respiratory electron transport. The V. album gene space sequences are available at the NCBI.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Lectinas/metabolismo , Proteínas de Plantas/metabolismo , Viscum album/genética , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Viscum album/metabolismo
9.
Plant J ; 110(2): 572-588, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106855

RESUMEN

The assembly and scaffolding of plant crop genomes facilitate the characterization of genetically diverse cultivated and wild germplasm. The cultivated tomato (Solanum lycopersicum) has been improved through the introgression of genetic material from related wild species, including resistance to pandemic strains of tobacco mosaic virus (TMV) from Solanum peruvianum. Here we applied PacBio HiFi and ONT Nanopore sequencing to develop independent, highly contiguous and complementary assemblies of an inbred TMV-resistant tomato variety. We show specific examples of how HiFi and ONT datasets can complement one another to improve assembly contiguity. We merged the HiFi and ONT assemblies to generate a long-read-only assembly where all 12 chromosomes were represented as 12 contiguous sequences (N50 = 68.5 Mbp). This chromosome scale assembly did not require scaffolding using an orthogonal data type. The merged assembly was validated by chromosome conformation capture data and is highly consistent with previous tomato genome assemblies that made use of genetic maps and Hi-C for scaffolding. Our long-read-only assembly reveals that a complex series of structural variants linked to the TMV resistance gene likely contributed to linkage drag of a 64.1-Mbp region of the S. peruvianum genome during tomato breeding. Through marker studies and ONT-based comprehensive haplotyping we show that this minimal introgression region is present in six cultivated tomato hybrid varieties developed in three commercial breeding programs. Our results suggest that complementary long read technologies can facilitate the rapid generation of near-complete genome sequences.


Asunto(s)
Nanoporos , Solanum lycopersicum , Cromosomas , Genoma de Planta/genética , Solanum lycopersicum/genética , Fitomejoramiento , Análisis de Secuencia de ADN
10.
BMC Genomics ; 24(1): 55, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36717785

RESUMEN

BACKGROUND: Tripsacum dactyloides (2n = 4x = 72) and Zea perennis (2n = 4x = 40) are tertiary gene pools of Zea mays L. and exhibit many abiotic adaptations absent in modern maize, especially salt tolerance. A previously reported allopolyploid (hereafter referred to as MTP, 2n = 74) synthesized using Zea mays, Tripsacum dactyloides, and Zea perennis has even stronger salt tolerance than Z. perennis and T. dactyloides. This allopolyploid will be a powerful genetic bridge for the genetic improvement of maize. However, the molecular mechanisms underlying its salt tolerance, as well as the key genes involved in regulating its salt tolerance, remain unclear. RESULTS: Single-molecule real-time sequencing and RNA sequencing were used to identify the genes involved in salt tolerance and reveal the underlying molecular mechanisms. Based on the SMRT-seq results, we obtained 227,375 reference unigenes with an average length of 2300 bp; most of the unigenes were annotated to Z. mays sequences (76.5%) in the NR database. Moreover, a total of 484 and 1053 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Functional enrichment analysis of DEGs revealed that multiple pathways responded to salt stress, including "Flavonoid biosynthesis," "Oxidoreductase activity," and "Plant hormone signal transduction" in the leaves and roots, and "Iron ion binding," "Acetyl-CoA carboxylase activity," and "Serine-type carboxypeptidase activity" in the roots. Transcription factors, such as those in the WRKY, B3-ARF, and bHLH families, and cytokinin negatively regulators negatively regulated the salt stress response. According to the results of the short time series-expression miner analysis, proteins involved in "Spliceosome" and "MAPK signal pathway" dynamically responded to salt stress as salinity changed. Protein-protein interaction analysis revealed that heat shock proteins play a role in the large interaction network regulating salt tolerance. CONCLUSIONS: Our results reveal the molecular mechanism underlying the regulation of MTP in the response to salt stress and abundant salt-tolerance-related unigenes. These findings will aid the retrieval of lost alleles in modern maize and provide a new approach for using T. dactyloides and Z. perennis to improve maize.


Asunto(s)
Tolerancia a la Sal , Zea mays , Regulación de la Expresión Génica de las Plantas , Poaceae/genética , Poliploidía , Tolerancia a la Sal/genética , Análisis de Secuencia de ARN , Zea mays/metabolismo
11.
BMC Genomics ; 24(1): 53, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709253

RESUMEN

BACKGROUND: Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS: Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION: Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.


Asunto(s)
Glomeromycota , Micorrizas , Humanos , Alelos , Micorrizas/genética , Polimorfismo Genético , Plantas/genética , Simbiosis/genética , Raíces de Plantas
12.
BMC Genomics ; 24(1): 340, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340366

RESUMEN

BACKGROUND: Oriental river prawn (Macrobrachium nipponense) is one of the most dominant species in shrimp farming in China, which is a rich source of protein and contributes to a significant impact on the quality of human life. Thus, more complete and accurate annotation of gene models are important for the breeding research of oriental river prawn. RESULTS: A full-length transcriptome of oriental river prawn muscle was obtained using the PacBio Sequel platform. Then, 37.99 Gb of subreads were sequenced, including 584,498 circular consensus sequences, among which 512,216 were full length non-chimeric sequences. After Illumina-based correction of long PacBio reads, 6,599 error-corrected isoforms were identified. Transcriptome structural analysis revealed 2,263 and 2,555 alternative splicing (AS) events and alternative polyadenylation (APA) sites, respectively. In total, 620 novel genes (NGs), 197 putative transcription factors (TFs), and 291 novel long non-coding RNAs (lncRNAs) were identified. CONCLUSIONS: In summary, this study offers novel insights into the transcriptome complexity and diversity of this prawn species, and provides valuable information for understanding the genomic structure and improving the draft genome annotation of oriental river prawn.


Asunto(s)
Palaemonidae , Animales , Humanos , Palaemonidae/genética , Perfilación de la Expresión Génica , Transcriptoma , Empalme Alternativo , Isoformas de Proteínas/genética
13.
Ann Hum Genet ; 87(1-2): 9-17, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36317495

RESUMEN

INTRODUCTION: The α-globin fusion gene between the HBA2 and HBAP1 genes becomes clinically important in thalassemia screening because this fusion gene can cause severe hemoglobin (Hb) H disease when combining with α0 -thalassemia (α0 -thal). Due to its uncommon rearrangement in the α gene cluster without dosage changes, this fusion gene is undetectable by common molecular testing approaches used for α-thal diagnosis. METHODS: In this study, we used the single-molecule real-time (SMRT) sequencing technique to detect this fusion gene in 23 carriers identified by next-generation sequencing (NGS) among 16,504 screened individuals. Five primers for α and ß thalassemia were utilized. RESULTS: According to the NGS results, the 23 carriers include 14 pure heterozygotes, eight compound heterozygotes with common α-thal alleles, and one homozygote. By using SMRT, the fusion mutant was successfully detected in all 23 carriers. Furthermore, SMRT corrected the diagnosis in two "pure" heterozygotes: one was compound heterozygote with anti-3.7 triplication, and the other was homozygote. CONCLUSION: Our results indicate that SMRT is a superior method compared to NGS in detecting the α fusion gene, attributing to its efficient, accurate, and one-step properties.


Asunto(s)
Talasemia alfa , Talasemia beta , Humanos , Globinas alfa/genética , Heterocigoto , Homocigoto , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Talasemia alfa/epidemiología , Talasemia beta/diagnóstico , Talasemia beta/genética , Talasemia beta/epidemiología
14.
J Med Virol ; 95(1): e28123, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36056719

RESUMEN

Fast, accurate sequencing methods are needed to identify new variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. Single-molecule real-time (SMRT) Pacific Biosciences (PacBio) provides long, highly accurate sequences by circular consensus reads. This study compares the performance of a target capture SMRT PacBio protocol for whole-genome sequencing (WGS) of SARS-CoV-2 to that of an amplicon PacBio SMRT sequencing protocol. The median genome coverage was higher (p < 0.05) with the target capture protocol (99.3% [interquartile range, IQR: 96.3-99.5]) than with the amplicon protocol (99.3% [IQR: 69.9-99.3]). The clades of 65 samples determined with both protocols were 100% concordant. After adjusting for Ct values, S gene coverage was higher with the target capture protocol than with the amplicon protocol. After stratification on Ct values, higher S gene coverage with the target capture protocol was observed only for samples with Ct > 17 (p < 0.01). PacBio SMRT sequencing protocols appear to be suitable for WGS, genotyping, and detecting mutations of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos
15.
J Med Virol ; 95(2): e28564, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36756931

RESUMEN

New variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can only be identified using accurate sequencing methods. Single molecule real-time (SMRT) sequencing has been used to characterize Alpha and Delta variants, but not Omicron variants harboring numerous mutations in the SARS-CoV-2 genome. This study assesses the performance of a target capture SMRT sequencing protocol for whole genome sequencing (WGS) of SARS-CoV-2 Omicron variants and compared it to that of an amplicon SMRT sequencing protocol optimized for Omicron variants. The failure rate of the target capture protocol (6%) was lower than that of the amplicon protocol (34%, p < 0.001) on our data set, and the median genome coverage with the target capture protocol (98.6% [interquartile range (IQR): 86-99.4]) was greater than that with the amplicon protocol (76.6% [IQR: 66-89.6], [p < 0.001]). The percentages of samples with >95% whole genome coverage were 64% with the target capture protocol and 19% with the amplicon protocol (p < 0.05). The clades of 96 samples determined with both protocols were 93% concordant and the lineages of 59 samples were 100% concordant. Thus, target capture SMRT sequencing appears to be an efficient method for WGS, genotyping and detecting mutations of SARS-CoV-2 Omicron variants.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Mutación
16.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902366

RESUMEN

The Great Himalayan Leaf-nosed bat (Hipposideros armiger) is one of the most representative species of all echolocating bats and is an ideal model for studying the echolocation system of bats. An incomplete reference genome and limited availability of full-length cDNAs have hindered the identification of alternatively spliced transcripts, which slowed down related basic studies on bats' echolocation and evolution. In this study, we analyzed five organs from H. armiger for the first time using PacBio single-molecule real-time sequencing (SMRT). There were 120 GB of subreads generated, including 1,472,058 full-length non-chimeric (FLNC) sequences. A total of 34,611 alternative splicing (AS) events and 66,010 Alternative Polyadenylation (APA) sites were detected by transcriptome structural analysis. Moreover, a total of 110,611 isoforms were identified, consisting of 52% new isoforms of known genes and 5% of novel gene loci, as well as 2112 novel genes that have not been annotated before in the current reference genome of H. armiger. Furthermore, several key novel genes, including Pol, RAS, NFKB1, and CAMK4, were identified as being associated with nervous, signal transduction, and immune system processes, which may be involved in regulating the auditory nervous perception and immune system that helps bats to regulate in echolocation. In conclusion, the full-length transcriptome results optimized and replenished existing H. armiger genome annotation in multiple ways and offer advantages for newly discovered or previously unrecognized protein-coding genes and isoforms, which can be used as a reference resource.


Asunto(s)
Quirópteros , Animales , Quirópteros/fisiología , Transcriptoma , Genoma , Isoformas de Proteínas/genética , Hojas de la Planta
17.
BMC Genomics ; 23(1): 31, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991471

RESUMEN

BACKGROUND: Short read sequencing has been used extensively to decipher the genome diversity of human cytomegalovirus (HCMV) strains, but falls short to reveal individual genomes in mixed HCMV strain populations. Novel third-generation sequencing platforms offer an extended read length and promise to resolve how distant polymorphic sites along individual genomes are linked. In the present study, we established a long amplicon PacBio sequencing workflow to identify the absolute and relative quantities of unique HCMV haplotypes spanning over multiple hypervariable sites in mixtures. Initial validation of this approach was performed with defined HCMV DNA templates derived from cell-culture enriched viruses and was further tested for its suitability on patient samples carrying mixed HCMV infections. RESULTS: Total substitution and indel error rate of mapped reads ranged from 0.17 to 0.43% depending on the stringency of quality trimming. Artificial HCMV DNA mixtures were correctly determined down to 1% abundance of the minor DNA source when the total HCMV DNA input was 4 × 104 copies/ml. PCR products of up to 7.7 kb and a GC content < 55% were efficiently generated when DNA was directly isolated from patient samples. In a single sample, up to three distinct haplotypes were identified showing varying relative frequencies. Alignments of distinct haplotype sequences within patient samples showed uneven distribution of sequence diversity, interspersed by long identical stretches. Moreover, diversity estimation at single polymorphic regions as assessed by short amplicon sequencing may markedly underestimate the overall diversity of mixed haplotype populations. CONCLUSIONS: Quantitative haplotype determination by long amplicon sequencing provides a novel approach for HCMV strain characterisation in mixed infected samples which can be scaled up to cover the majority of the genome by multi-amplicon panels. This will substantially improve our understanding of intra-host HCMV strain diversity and its dynamic behaviour.


Asunto(s)
Citomegalovirus , Secuenciación de Nucleótidos de Alto Rendimiento , Citomegalovirus/genética , Haplotipos , Humanos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
18.
BMC Genomics ; 23(1): 249, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361121

RESUMEN

BACKGROUND: Single molecule measurements of DNA polymerization kinetics provide a sensitive means to detect both secondary structures in DNA and deviations from primary chemical structure as a result of modified bases. In one approach to such analysis, deviations can be inferred by monitoring the behavior of DNA polymerase using single-molecule, real-time sequencing with zero-mode waveguide. This approach uses a Single Molecule Real Time (SMRT)-sequencing measurement of time between fluorescence pulse signals from consecutive nucleosides incorporated during DNA replication, called the interpulse duration (IPD). RESULTS: In this paper we present an analysis of loci with high IPDs in two genomes, a bacterial genome (E. coli) and a eukaryotic genome (C. elegans). To distinguish the potential effects of DNA modification on DNA polymerization speed, we paired an analysis of native genomic DNA with whole-genome amplified (WGA) material in which DNA modifications were effectively removed. Adenine modification sites for E. coli are known and we observed the expected IPD shifts at these sites in the native but not WGA samples. For C. elegans, such differences were not observed. Instead, we found a number of novel sequence contexts where IPDs were raised relative to the average IPDs for each of the four nucleotides, but for which the raised IPD was present in both native and WGA samples. CONCLUSION: The latter results argue strongly against DNA modification as the underlying driver for high IPD segments for C. elegans, and provide a framework for separating effects of DNA modification from context-dependent DNA polymerase kinetic patterns inherent in underlying DNA sequence for a complex eukaryotic genome.


Asunto(s)
Caenorhabditis elegans , Escherichia coli , Animales , Caenorhabditis elegans/genética , ADN/química , ADN/genética , Escherichia coli/genética , Polimerizacion , Análisis de Secuencia de ADN/métodos
19.
Brief Bioinform ; 21(6): 1971-1986, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792498

RESUMEN

A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Alelos , Mapeo Cromosómico , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
20.
Microb Ecol ; 84(3): 941-944, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34608508

RESUMEN

We carried out a 4-year manipulative field experiment in a semiarid shrubland in southeastern Spain to assess the impacts of experimental warming (W), rainfall reduction (RR), and their combination (W + RR) on the composition and diversity of arbuscular mycorrhizal fungal (AMF) communities in rhizosphere soil of H. syriacum and G. struthium shrubs using single-molecule real-time (SMRT) DNA sequencing. Across climate treatments, we encountered 109 AMF operational taxonomic units (OTUs) that were assigned to four families: Glomeraceae (93.94%), Gigasporaceae (2.19%), Claroideoglomeraceae (1.95%), and Diversisporaceae (1.92%). AMF community composition and diversity at OTU level were unaffected by the climate manipulation treatments, except for a significant decrease in AMF OTU richness in the W treatment relative to the control. However, we found a significant decrease of AMF family richness in all climate manipulation treatments relative to the control treatment. Members of the Gigasporaceae and Diversisporaceae families appeared to be highly vulnerable to intensification of heat and drought stress, as their abundances decreased by 67% and 77%, respectively, in the W + RR treatment relative to current ambient conditions. In contrast, the relative abundance and dominance of the Glomeraceae family within the AMF community increased significantly under the W + RR treatment, with Glomeraceae being the indicator family for the W + RR treatment. The interaction between warming and rainfall reduction had a significant effect on AMF community structure at family level. These findings provide new insights to help in the conservation of the soil biodiversity facing climate change in dryland ecosystems.


Asunto(s)
Glomeromycota , Micorrizas , Humanos , Micorrizas/genética , Ecosistema , Microbiología del Suelo , Biodiversidad , Suelo/química , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA