Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 10(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744737

RESUMEN

Extracellular electron transfer (EET), the process that allows microbes to exchange electrons in a redox capacity with solid interfaces such as minerals or electrodes, has been predominantly described in microbes that use iron during respiration. In this work, we characterize the physiology, genome, and electrochemical properties of two obligately heterotrophic marine microbes that were previously isolated from marine sediment cathode enrichments. Phylogenetic analysis of isolate 16S rRNA genes showed two strains, SN11 and FeN1, belonging to the genus Idiomarina. Strain SN11 was found to be nearly identical to I. loihiensis L2-TRT, and strain FeN1 was most closely related to I. maritima 908087T. Each strain had a relatively small genome (~2.8-2.9 MB). Phenotypic similarities among FeN1, SN11, and the studied strains include being Gram-negative, motile, catalase- and oxidase-positive, and rod-shaped. Physiologically, all strains appeared to exclusively use amino acids as a primary carbon source for growth. This was consistent with genomic observations. Each strain contained 17 to 22 proteins with heme-binding motifs. None of these were predicted to be extracellular, although seven were of unknown localization and lacked functional annotation beyond cytochrome. Despite the lack of homology to known EET pathways, both FeN1 and SN11 were capable of sustained electron uptake over time in an electrochemical system linked to respiration. Given the association of these Idiomarina strains with electro-active biofilms in the environment and their lack of autotrophic capabilities, we predict that EET is used exclusively for respiration in these microbes.

2.
PeerJ ; 5: e3536, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717594

RESUMEN

Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox) niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773) between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001) at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm) showed that mussel presence reduced observed species richness (p = 0.005), Chao1 diversity (p = 0.005), and Shannon diversity (p < 0.001), with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs) classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001) with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N)-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family "ANME-2d" and bacterial phylum "NC10", respectively. Nitrosomonadaceae (0.9-fold (p < 0.001)) increased with mussels, while NC10 (2.1-fold (p < 0.001)), ANME-2d (1.8-fold (p < 0.001)), and Candidatus Nitrososphaera (1.5-fold (p < 0.001)) decreased with mussels. Co-occurrence of 2-fold increases in Candidatus Brocadia and Nitrospira in shallow sediments suggests that mussels may enhance microbial niches at the interface of oxic-anoxic conditions, presumably through biodeposition and burrowing. Furthermore, it is likely that the niches of Candidatus Nitrososphaera and nitrite- and nitrate-dependent anaerobic methane oxidizers were suppressed by mussel biodeposition and sediment aeration, as these phylotypes require low ammonium concentrations and anoxic conditions, respectively. As far as we know, this is the first study to characterize freshwater mussel impacts on microbial diversity and the vertical distribution of N-cycle microorganisms in upper Mississippi river sediment. These findings advance our understanding of ecosystem services provided by mussels and their impact on aquatic biogeochemical N-cycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA