Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(16): 3358-3387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977849

RESUMEN

Tetanus neurotoxin (TeNT) causes spastic paralysis by inhibiting neurotransmission in spinal inhibitory interneurons. TeNT binds to the neuromuscular junction, leading to its internalisation into motor neurons and subsequent transcytosis into interneurons. While the extracellular matrix proteins nidogens are essential for TeNT binding, the molecular composition of its receptor complex remains unclear. Here, we show that the receptor-type protein tyrosine phosphatases LAR and PTPRδ interact with the nidogen-TeNT complex, enabling its neuronal uptake. Binding of LAR and PTPRδ to the toxin complex is mediated by their immunoglobulin and fibronectin III domains, which we harnessed to inhibit TeNT entry into motor neurons and protect mice from TeNT-induced paralysis. This function of LAR is independent of its role in regulating TrkB receptor activity, which augments axonal transport of TeNT. These findings reveal a multi-subunit receptor complex for TeNT and demonstrate a novel trafficking route for extracellular matrix proteins. Our study offers potential new avenues for developing therapeutics to prevent tetanus and dissecting the mechanisms controlling the targeting of physiological ligands to long-distance axonal transport in the nervous system.


Asunto(s)
Glicoproteínas de Membrana , Neuronas Motoras , Toxina Tetánica , Animales , Ratones , Toxina Tetánica/metabolismo , Neuronas Motoras/metabolismo , Glicoproteínas de Membrana/metabolismo , Humanos , Moléculas de Adhesión Celular/metabolismo , Unión Proteica , Receptor trkB/metabolismo , Transporte Axonal , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores
2.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891974

RESUMEN

Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope.


Asunto(s)
Anticuerpos Monoclonales , Endocitosis , Simulación del Acoplamiento Molecular , Neuronas , Toxina Tetánica , Animales , Ratas , Neuronas/metabolismo , Humanos , Anticuerpos Monoclonales/inmunología , Toxina Tetánica/inmunología , Toxina Tetánica/metabolismo , Tétanos/prevención & control , Tétanos/inmunología , Epítopos/inmunología , Gangliósidos/inmunología , Gangliósidos/metabolismo , Células Cultivadas , Simulación por Computador , Metaloendopeptidasas
3.
EMBO Rep ; 21(3): e49129, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32030864

RESUMEN

Signalling endosomes are essential for trafficking of activated ligand-receptor complexes and their distal signalling, ultimately leading to neuronal survival. Although deficits in signalling endosome transport have been linked to neurodegeneration, our understanding of the mechanisms controlling this process remains incomplete. Here, we describe a new modulator of signalling endosome trafficking, the insulin-like growth factor 1 receptor (IGF1R). We show that IGF1R inhibition increases the velocity of signalling endosomes in motor neuron axons, both in vitro and in vivo. This effect is specific, since IGF1R inhibition does not alter the axonal transport of mitochondria or lysosomes. Our results suggest that this change in trafficking is linked to the dynein adaptor bicaudal D1 (BICD1), as IGF1R inhibition results in an increase in the de novo synthesis of BICD1 in the axon of motor neurons. Finally, we found that IGF1R inhibition can improve the deficits in signalling endosome transport observed in a mouse model of amyotrophic lateral sclerosis (ALS). Taken together, these findings suggest that IGF1R inhibition may be a new therapeutic target for ALS.


Asunto(s)
Transporte Axonal , Endosomas , Animales , Axones/metabolismo , Endosomas/metabolismo , Ratones , Neuronas Motoras , Transducción de Señal
4.
J Physiol ; 599(2): 709-724, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296086

RESUMEN

KEY POINTS: The zona incerta (ZI) and ventral tegmental area (VTA) are brain areas that are both implicated in feeding behaviour. The ZI projects to the VTA, although it has not yet been investigated whether this projection regulates feeding. We experimentally (in)activated the ZI to VTA projection by using dual viral vector technology, and studied the effects on feeding microstructure, the willingness to work for food, general activity and body temperature. Activity of the ZI to VTA projection promotes feeding by facilitating action initiation towards food, as reflected in meal frequency and the willingness to work for food reward, without affecting general activity or directly modulating body temperature. We show for the first time that activity of the ZI to VTA projection promotes feeding, which improves the understanding of the neurobiology of feeding behaviour and body weight regulation. ABSTRACT: Both the zona incerta (ZI) and the ventral tegmental area (VTA) have been implicated in feeding behaviour. The ZI provides prominent input to the VTA, although it has not yet been investigated whether this projection regulates feeding. Therefore, we investigated the role of ZI to VTA projection neurons in the regulation of several aspects of feeding behaviour. We determined the effects of (in)activation of ZI to VTA projection neurons on feeding microstructure, food-motivated behaviour under a progressive ratio schedule of reinforcement, locomotor activity and core body temperature. To activate or inactivate ZI neurons projecting to the VTA, we used a combination of canine adenovirus-2 in the VTA, as well as Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) or tetanus toxin (TetTox) light chain in the ZI. TetTox-mediated inactivation of ZI to VTA projection neurons reduced food-motivated behaviour and feeding by reducing meal frequency. Conversely, DREADD-mediated chemogenetic activation of ZI to VTA projection neurons promoted food-motivated behaviour and feeding. (In)activation of ZI to VTA projection neurons did not affect locomotor activity or directly regulate core body temperature. Taken together, ZI neurons projecting to the VTA exert bidirectional control overfeeding behaviour. More specifically, activity of ZI to VTA projection neurons facilitate action initiation towards feeding, as reflected in both food-motivated behaviour and meal initiation, without affecting general activity.


Asunto(s)
Área Tegmental Ventral , Zona Incerta , Conducta Alimentaria , Neuronas , Recompensa
5.
Neurobiol Dis ; 154: 105347, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771663

RESUMEN

The seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis. In this study, we explored the long-term dynamics of seizures in the tetanus toxin model of temporal lobe epilepsy. The results demonstrate the existence of long-term fluctuations in seizure probability, where seizures form clusters in time and are then followed by seizure-free periods. Within each cluster, seizure distribution is non-Poissonian, as demonstrated by the progressively increasing inter-seizure interval (ISI), which marks the approaching cluster termination. The lengthening of ISIs is paralleled by: increasing behavioral seizure severity, the occurrence of convulsive seizures, recruitment of extra-hippocampal structures and the spread of electrographic epileptiform activity outside of the limbic system. The results suggest that repeated non-convulsive seizures obey the 'seizures-beget-seizures' principle, leading to the occurrence of convulsive seizures, which decrease the probability of a subsequent seizure and, thus, increase the following ISI. The cumulative effect of repeated convulsive seizures leads to cluster termination, followed by a long inter-cluster period. We propose that seizures themselves are an endogenous factor that contributes to long-term fluctuations in seizure susceptibility and their mutual interaction determines the future evolution of disease activity.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Convulsiones/fisiopatología , Animales , Electroencefalografía/métodos , Electroencefalografía/tendencias , Epilepsia del Lóbulo Temporal/inducido químicamente , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Convulsiones/inducido químicamente , Toxina Tetánica/toxicidad , Factores de Tiempo
6.
Synapse ; 75(6): e22193, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33141999

RESUMEN

In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.


Asunto(s)
Neuronas , Toxina Tetánica , Animales , Dendritas/metabolismo , Hipocampo/metabolismo , Sistema Límbico/metabolismo , Ratones , Actividad Motora , Neuronas/metabolismo , Toxina Tetánica/metabolismo , Toxina Tetánica/farmacología , Toxina Tetánica/uso terapéutico
7.
Epilepsy Behav ; 114(Pt A): 107652, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309429

RESUMEN

INTRODUCTION: Epilepsy is a debilitating neurological condition characterized by spontaneous seizures as well as significant comorbid behavioral abnormalities. In addition to seizures, epileptic patients exhibit interictal spikes far more frequently than seizures, often, but not always observed in the same brain areas. The exact relationship between spiking and seizures as well as their respective effects on behavior are not well understood. In fact, spiking without overt seizures is seen in various psychiatric conditions including attention-deficit hyperactivity disorder. METHODS: In order to study the effects of spiking and seizures on behavior in an epileptic animal model, we used long-term video-electroencephalography recordings at six cortical recording sites together with behavioral activity monitoring. Animals received unilateral injections of tetanus toxin into either the somatosensory or motor cortex. RESULTS: Somatosensory cortex-injected animals developed progressive spiking ipsilateral to the injection site, while those receiving the injection into the motor cortex developed mostly contralateral spiking and spontaneous seizures. Animals with spiking but no seizures displayed a hyperactive phenotype, while animals with both spiking and seizures displayed a hypoactive phenotype. Not all spikes were equivalent as spike location strongly correlated with distinct locomotor behaviors including ambulatory distance, vertical movements, and rotatory movement. CONCLUSIONS: Together, our results demonstrate relationships between brain region-specific spiking, seizures, and behaviors in rodents that could translate into a better understanding for patients with epileptic behavioral comorbidities and other neuropsychiatric disorders.


Asunto(s)
Epilepsia , Animales , Encéfalo , Electroencefalografía , Epilepsia/complicaciones , Humanos , Convulsiones/inducido químicamente , Corteza Somatosensorial
8.
Cell Microbiol ; 21(11): e13037, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31050145

RESUMEN

A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Disulfuros/química , Toxina Tetánica/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Animales , Azoles/uso terapéutico , Toxinas Botulínicas Tipo A/toxicidad , Botulismo/tratamiento farmacológico , Botulismo/fisiopatología , Disulfuros/uso terapéutico , Disulfuros/toxicidad , Humanos , Imidazoles/uso terapéutico , Isoindoles , Neurotoxinas/química , Neurotoxinas/toxicidad , Compuestos de Organoselenio/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Dominios Proteicos , Vesículas Sinápticas/metabolismo , Tétanos/tratamiento farmacológico , Tétanos/fisiopatología , Toxina Tetánica/toxicidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
9.
J Ind Microbiol Biotechnol ; 47(12): 1059-1073, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175241

RESUMEN

Tetanus is a fatal disease caused by Clostridium tetani infections. To prevent infections, a toxoid vaccine, developed almost a century ago, is routinely used in humans and animals. The vaccine is listed in the World Health Organisation list of Essential Medicines and can be produced and administered very cheaply in the developing world for less than one US Dollar per dose. Recent developments in both analytical tools and frameworks for systems biology provide industry with an opportunity to gain a deeper understanding of the parameters that determine C. tetani virulence and physiological behaviour in bioreactors. Here, we compared a traditional fermentation process with a fermentation medium supplemented with five heavily consumed amino acids. The experiment demonstrated that amino acid catabolism plays a key role in the virulence of C. tetani. The addition of the five amino acids favoured growth, decreased toxin production and changed C. tetani morphology. Using time-course transcriptomics, we created a "fermentation map", which shows that the tetanus toxin transcriptional regulator BotR, P21 and the tetanus toxin gene was downregulated. Moreover, this in-depth analysis revealed potential genes that might be involved in C. tetani virulence regulation. We observed differential expression of genes related to cell separation, surface/cell adhesion, pyrimidine biosynthesis and salvage, flagellar motility, and prophage genes. Overall, the fermentation map shows that, mediated by free amino acid concentrations, virulence in C. tetani is regulated at the transcriptional level and affects a plethora of metabolic functions.


Asunto(s)
Aminoácidos , Clostridium tetani , Aminoácidos/metabolismo , Animales , Clostridium tetani/genética , Clostridium tetani/metabolismo , Clostridium tetani/patogenicidad , Humanos , Toxina Tetánica/biosíntesis , Toxina Tetánica/genética , Transcriptoma
10.
Rev Invest Clin ; 72(2): 80-87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32284627

RESUMEN

BACKGROUND: Several studies have evaluated the effect of infectious diseases and vaccine protocols during pregnancy on maternal milk immunoglobulin (Ig) levels, to understand the protection conferred by lactation on newborns. Colostrum is the primary source of maternal IgA for the newborn. IgA participates in protection mechanisms in the neonate's mucosa. In humans, IgA has two subclasses with differential anatomical distribution among mucosal compartments. Total IgA levels in maternal milk vary after antigen stimulation and have differential affinities in function of the chemical composition of the antigens. We studied the effect of antigenic stimulation during pregnancy on the concentrations of specific IgA1 and IgA2 subclasses in human colostrum. METHODS: We analyzed data from 113 women in Mexico City and compared the amount of IgA subclasses in colostrum against three antigens: two from vaccine protocols (tetanus toxoid and pneumococcal polysaccharides) and lipopolysaccharide, a ubiquitous antigen in the gastrointestinal tract. RESULTS: In agreement with the previous reports, we showed that IgA1 from colostrum mainly recognized protein antigens; in sharp contrast, IgA2 was mostly directed against polysaccharide antigens. These levels increased in women who had previous contacts through vaccination or infections during pregnancy. CONCLUSIONS: Antigen interaction during pregnancy increased the amount of specific IgA subclasses, depending on the chemical composition of the antigen.


Asunto(s)
Antígenos/química , Antígenos/inmunología , Calostro/inmunología , Inmunoglobulina A/clasificación , Inmunoglobulina A/inmunología , Adulto , Reacciones Antígeno-Anticuerpo , Calostro/química , Femenino , Humanos , Inmunoglobulina A/análisis , Embarazo
11.
J Neurosci ; 38(26): 5843-5853, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29793975

RESUMEN

Mature dentate granule cells in the hippocampus receive input from the entorhinal cortex via the perforant path in precisely arranged lamina, with medial entorhinal axons innervating the middle molecular layer and lateral entorhinal cortex axons innervating the outer molecular layer. Although vastly outnumbered by mature granule cells, adult-generated newborn granule cells play a unique role in hippocampal function, which has largely been attributed to their enhanced excitability and plasticity (Schmidt-Hieber et al., 2004; Ge et al., 2007). Inputs from the medial and lateral entorhinal cortex carry different informational content. Thus, the distribution of inputs onto newly integrated granule cells will affect their function in the circuit. Using retroviral labeling in combination with selective optogenetic activation of medial or lateral entorhinal inputs, we examined the functional innervation and synaptic maturation of newly generated dentate granule cells in the mouse hippocampus. Our results indicate that lateral entorhinal inputs provide the majority of functional innervation of newly integrated granule cells at 21 d postmitosis. Despite preferential functional targeting, the dendritic spine density of immature granule cells was similar in the outer and middle molecular layers, which we speculate could reflect an unequal distribution of shaft synapses. However, chronic blockade of neurotransmitter release of medial entorhinal axons with tetanus toxin disrupted normal synapse development of both medial and lateral entorhinal inputs. Our results support a role for preferential lateral perforant path input onto newly generated neurons in mediating pattern separation, but also indicate that medial perforant path input is necessary for normal synaptic development.SIGNIFICANCE STATEMENT The formation of episodic memories involves the integration of contextual and spatial information. Newly integrated neurons in the dentate gyrus of the hippocampus play a critical role in this process, despite constituting only a minor fraction of the total number of granule cells. Here we demonstrate that these neurons preferentially receive information thought to convey the context of an experience. Each newly integrated granule cell plays this unique role for ∼1 month before reaching maturity.


Asunto(s)
Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Neuronas/fisiología , Vía Perforante/fisiología , Animales , Giro Dentado/citología , Corteza Entorrinal/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Vía Perforante/citología , Sinapsis/fisiología
12.
Microb Pathog ; 127: 225-232, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30528250

RESUMEN

Along with robust immunogenicity, an ideal vaccine candidate should be able to produce a long lasting protection. In this regard, the frequency of memory B-cells is possibly an important factor in memory B-cell persistency and duration of immunological memory. On this basis, binding domains of tetanus toxin (HcT), botulinum type A1 toxin (HcA), and heat-labile toxin (LTB) were selected as antigen models that induced long-term, midterm and short-term immune memory, respectively. In the present study, the frequency of total memory B-cells after immunization with HcT, HcA and LTB antigens after 90 and 180 days, and also after one booster, in 190 days, was evaluated. The results showed a significant correlation between frequency of total memory B-cells and duration of humoral immunity. Compared to other antigens, the HcT antibody titers and HcT total memory B-cell populations were greater and persistent even after 6 months. At 6 months after the final immunization, all HcT- and HcA-immunized mice survived against tetanus and botulinum toxins, and also LT toxin binding to GM1 ganglioside was blocked in LTB-immunized mice. We conclude the frequency of memory B-cells and their duration are likely a key factor for vaccine memory duration.


Asunto(s)
Antígenos Bacterianos/inmunología , Subgrupos de Linfocitos B/inmunología , Toxinas Bacterianas/inmunología , Toxinas Botulínicas/inmunología , Enterotoxinas/inmunología , Proteínas de Escherichia coli/inmunología , Memoria Inmunológica , Toxina Tetánica/inmunología , Animales , Antígenos Bacterianos/administración & dosificación , Toxinas Bacterianas/administración & dosificación , Toxinas Botulínicas/administración & dosificación , Enterotoxinas/administración & dosificación , Proteínas de Escherichia coli/administración & dosificación , Ratones , Toxina Tetánica/administración & dosificación , Factores de Tiempo
13.
Neurobiol Dis ; 106: 244-254, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28709994

RESUMEN

Metabolic intervention strategy of epilepsy treatment has been gaining broader attention due to accumulated evidence that hypometabolism, manifested in humans as reduced brain glucose consumption, is a principal factor in acquired epilepsy. Therefore, targeting deficient energy metabolism may be an effective approach for treating epilepsy. To confront this pathology we utilized pyruvate, which besides being an anaplerotic mitochondrial fuel possesses a unique set of neuroprotective properties as it: (i) is a potent reactive oxygen species scavenger; (ii) abates overactivation of Poly [ADP-ribose] polymerase 1 (PARP-1); (iii) facilitates glutamate efflux from the brain; (iv) augments brain glycogen stores; (v) is anti-inflammatory; (vi) prevents neuronal hyperexcitability; and (vii) normalizes the cytosolic redox state. In vivo, chronic oral pyruvate administration completely abolished established epileptic phenotypes in three accepted and fundamentally different rodent acquired epilepsy models. Our study reports metabolic correction by pyruvate as a potentially highly effective treatment of acquired epilepsies.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Ácido Pirúvico/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ondas Encefálicas/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Excitación Neurológica , Masculino , Ratones Transgénicos , Pentilenotetrazol , Ratas Sprague-Dawley , Toxina Tetánica
14.
Biochem Eng J ; 117(Pt B): 73-81, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28111521

RESUMEN

Transplastomic plants are capable of high-yield production of recombinant biopharmaceutical proteins. Plant tissue culture combines advantages of agricultural cultivation with the bioprocess consistency associated with suspension culture. Overexpression of recombinant proteins through regeneration of transplastomic Nicotiana tabacum shoots from callus tissue in RITA® temporary immersion bioreactors has been previously demonstrated. In this study we investigated the hydrodynamics of periodic pneumatic suspension of liquid medium during temporary immersion culture (4 min aeration every 8 h), and the impact on biological responses and transplastomic expression of fragment C of tetanus toxin (TetC). Biomass was grown under a range of aeration rates for 3, 20 and 40-day durations. Growth, mitochondrial activity (a viability indicator) and TetC protein yields were correlated against the hydrodynamic parameters, shear rate and energy dissipation rate (per kg of medium). A critical aeration rate of 440 ml min-1 was identified, corresponding to a shear rate of 96.7 s-1, pneumatic power input of 8.8 mW kg-1 and initial 20-day pneumatic energy dissipation of 127 J kg-1, at which significant reductions in biomass accumulation and mitochondrial activity were observed. There was an exponential decline in TetC yields with increasing aeration rates at 40 days, across the entire range of conditions tested. These observations have important implications for the optimisation and scale-up of transplastomic plant tissue culture bioprocesses for biopharmaceutical production.

15.
Traffic ; 15(10): 1057-65, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25040808

RESUMEN

Tetanus toxin elicits spastic paralysis by cleaving VAMP-2 to inhibit neurotransmitter release in inhibitory neurons of the central nervous system. As the retrograde transport of tetanus neurotoxin (TeNT) from endosomes has been described, the initial steps that define how TeNT initiates trafficking to the retrograde system are undefined. This study examines TeNT entry into primary cultured cortical neurons by total internal reflection fluorescence (TIRF) microscopy. The initial association of TeNT with the plasma membrane was dependent upon ganglioside binding, but segregated from synaptophysin1 (Syp1), a synaptic vesicle (SV) protein. TeNT entry was unaffected by membrane depolarization and independent of SV cycling, whereas entry of the receptor-binding domain of TeNT (HCR/T) was stimulated by membrane depolarization and inhibited by blocking SV cycling. Measurement of the incidence of colocalization showed that TeNT segregated from Syp1, whereas HCR/T colocalized with Syp1. These studies show that while the HCR defines the initial association of TeNT with the cell membrane, regions outside the HCR define how TeNT enters neurons independent of SV cycling. This provides a basis for the unique entry of botulinum toxin and tetanus toxin into neurons.


Asunto(s)
Endocitosis , Neuronas/metabolismo , Toxina Tetánica/farmacología , Animales , Toxinas Botulínicas/farmacología , Membrana Celular/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Endosomas/metabolismo , Gangliósidos/metabolismo , Neuronas/efectos de los fármacos , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Sinaptofisina/metabolismo , Toxina Tetánica/química
16.
Artículo en Inglés | MEDLINE | ID: mdl-26945022

RESUMEN

BACKGROUND: The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. METHODS: For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. RESULTS: We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. CONCLUSIONS: Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers.


Asunto(s)
Locomoción/efectos de los fármacos , Metanfetamina/antagonistas & inhibidores , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Fragmentos de Péptidos/farmacología , Toxina Tetánica/farmacología , Animales , Temperatura Corporal/efectos de los fármacos , Recuento de Células , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Masculino , Ratones , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/prevención & control , Prueba de Desempeño de Rotación con Aceleración Constante , Tirosina 3-Monooxigenasa/metabolismo
17.
J Neurosci ; 34(4): 1105-14, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24453303

RESUMEN

Improved understanding of the interaction between state of vigilance (SOV) and seizure onset has therapeutic potential. Six rats received injections of tetanus toxin (TeTX) in the ventral hippocampus that resulted in chronic spontaneous seizures. The distribution of SOV before 486 seizures was analyzed for a total of 19 d of recording. Rapid eye movement sleep (REM) and exploratory wake, both of which express prominent hippocampal theta rhythm, preceded 47 and 34%, for a total of 81%, of all seizures. Nonrapid eye movement sleep (NREM) and nonexploratory wake, neither of which expresses prominent theta, preceded 6.8 and 13% of seizures. We demonstrate that identification of SOV yields significant differentiation of seizure susceptibilities, with the instantaneous seizure rate during REM nearly 10 times higher than baseline and the rate for NREM less than half of baseline. Survival analysis indicated a shorter duration of preseizure REM bouts, with a maximum transition to seizure at ∼90 s after the onset of REM. This study provides the first analysis of a correlation between SOV and seizure onset in the TeTX model of temporal lobe epilepsy, as well as the first demonstration that hippocampal theta rhythms associated with natural behavioral states can serve a seizure-promoting role. Our findings are in contrast with previous studies suggesting that the correlations between SOV and seizures are primarily governed by circadian oscillations and the notion that hippocampal theta rhythms inhibit seizures. The documentation of significant SOV-dependent seizure susceptibilities indicates the potential utility of SOV and its time course in seizure prediction and control.


Asunto(s)
Nivel de Alerta/fisiología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiopatología , Sueño REM/fisiología , Ritmo Teta/fisiología , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/inducido químicamente , Masculino , Neurotoxinas/toxicidad , Ratas , Ratas Long-Evans , Toxina Tetánica/toxicidad
18.
J Biol Chem ; 289(32): 22450-8, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24973217

RESUMEN

Tetanus neurotoxin (TeNT) causes neuroparalytic disease by entering the neuronal soma to block the release of neurotransmitters. However, the mechanism by which TeNT translocates its enzymatic domain (light chain) across endosomal membranes remains unclear. We found that TeNT and a truncated protein devoid of the receptor binding domain (TeNT-LHN) associated with membranes enriched in acidic phospholipids in a pH-dependent manner. Thus, in contrast to diphtheria toxin, the formation of a membrane-competent state of TeNT requires the membrane interface and is modulated by the bilayer composition. Channel formation is further enhanced by tethering of TeNT to the membrane through ganglioside co-receptors prior to acidification. Thus, TeNT channel formation can be resolved into two sequential steps: 1) interaction of the receptor binding domain (heavy chain receptor binding domain) with ganglioside co-receptors orients the translocation domain (heavy chain translocation domain) as the lumen of the endosome is acidified and 2) low pH, in conjunction with acidic lipids within the membrane drives the conformational changes in TeNT necessary for channel formation.


Asunto(s)
Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Toxina Tetánica/metabolismo , Toxina Tetánica/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Gangliósidos/metabolismo , Concentración de Iones de Hidrógeno , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Liposomas/metabolismo , Metaloendopeptidasas/genética , Modelos Neurológicos , Mutagénesis Sitio-Dirigida , Potasio/metabolismo , Estructura Secundaria de Proteína , Ratas , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Toxina Tetánica/genética
19.
Pol Merkur Lekarski ; 39(231): 157-61, 2015 Sep.
Artículo en Polaco | MEDLINE | ID: mdl-26449578

RESUMEN

Toxins produced by the bacteria are of particular interest as potential cargo combat possible for use in a terrorist attack or war. Shiga toxin is usually produced by shiga toxigenic strains of Escherichia coli (STEC - shigatoxigenic Escherichia coli). To infection occurs mostly after eating contaminated beef. Clinical syndromes associated with Shiga toxin diarrhea, hemorrhagic colitis, hemolytic uremic syndrome (HUS - hemolytic uremic syndrome) or thrombotic thrombocytopenic purpura. Treatment is symptomatic. In HUS, in which mortality during an epidemic reaches 20%, extending the kidney injury dialysis may be necessary. Exposure to tetanus toxin produced by Clostridium tetani, resulting in the most generalized tetanus, characterized by increased muscle tension and painful contractions of individual muscle groups. In the treatment beyond symptomatic behavior (among others spasticity medications, anticonvulsants, muscle relaxants) is used tetanus antitoxin and antibiotics (metronidazole choice). A common complication is acute respiratory failure - then it is necessary to implement mechanical ventilation.


Asunto(s)
Armas Biológicas , Bioterrorismo , Toxina Shiga/toxicidad , Toxina Tetánica/toxicidad , Tétanos/inducido químicamente , Animales , Clostridium tetani , Diarrea/inducido químicamente , Diarrea/microbiología , Diarrea/terapia , Escherichia coli , Fluidoterapia , Contaminación de Alimentos , Síndrome Hemolítico-Urémico/inducido químicamente , Síndrome Hemolítico-Urémico/diagnóstico , Síndrome Hemolítico-Urémico/terapia , Humanos , Púrpura Trombocitopénica Trombótica/inducido químicamente , Púrpura Trombocitopénica Trombótica/diagnóstico , Púrpura Trombocitopénica Trombótica/terapia , Tétanos/diagnóstico , Tétanos/terapia
20.
Muscle Nerve ; 50(5): 759-66, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24590678

RESUMEN

INTRODUCTION: We examined the possibility that tetanus toxin can prevent muscle atrophy associated with limb immobility in rats. METHODS: While the knee and ankle joints were immobilized unilaterally, the tibialis anterior (TA) muscle on the immobilized side was injected with 1 µl saline or with 1 ng tetanus toxin. After 2 weeks, TA wet weights, contractile forces, and myofiber sizes from the immobilized sides were compared with those from body weight-matched normal animals. RESULTS: Saline group wet weights decreased and produced less absolute twitch and tetanic force and normalized tetanic force compared with the toxin or normal groups. Cross-sectional areas of saline group type I, IIa, and IId myofibers, and the masses of saline group IIa, IId, IIb, and toxin group IIb myofibers, were smaller compared with the normal group. CONCLUSIONS: Tetanus toxin prevented common signs of muscle atrophy and may become a useful adjunct to current rehabilitation strategies.


Asunto(s)
Inmovilización/efectos adversos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/fisiopatología , Atrofia Muscular/prevención & control , Neurotoxinas/uso terapéutico , Toxina Tetánica/uso terapéutico , Adenosina Trifosfatasas/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Extremidades/fisiopatología , Femenino , Lateralidad Funcional/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/etiología , Atrofia Muscular/patología , Neurotoxinas/farmacología , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Toxina Tetánica/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA