Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252989

RESUMEN

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

2.
Proc Natl Acad Sci U S A ; 120(45): e2308035120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37883417

RESUMEN

Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.

3.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166126

RESUMEN

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

4.
Nano Lett ; 24(10): 3196-3203, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38437624

RESUMEN

Gelation is a promising method to assemble 3D macroscopic structures from MXene sheets for various applications. However, the fine control and scalable manufacturing of 3D MXene monoliths remains a great challenge. Herein, the controllable gelation of Ti3C2Tx MXene initiated by various ionic liquids (ILs) is first proposed, where the IL serve as linkers to bond the nanosheets together through electrostatic and hydrogen bonding interactions, forming 3D monoliths with well-adjustable structure. Furthermore, density functional theory calculations and experiments further reveal the cross-linking effect of different ILs. Typically, 3D porous structure with high specific surface area, suitable pore size, and improved electrolyte affinity is designed through the cross-linking of Ti3C2Tx with 1-vinyl-3-ethylimidazole bromide ([C2VIm]Br-Ti3C2Tx). Due to the strong coupling, the as-synthesized monolith possesses excellent rate performance and high energy density. The methodology is quite flexible, controllable, and universal that provides a new perspective for promoting innovative applications of 2D materials.

5.
Nano Lett ; 24(33): 10297-10304, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133240

RESUMEN

In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 µg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 µg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 µg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.

6.
Small ; 20(20): e2306434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152953

RESUMEN

MXenes, with their remarkable attributes, stand at the forefront of diverse applications. However, the challenge remains in sustaining their performance, especially concerning Ti3C2Tx MXene electrodes. Current self-healing techniques, although promising, often rely heavily on adjacent organic materials. This study illuminates a pioneering water-initiated self-healing mechanism tailored specifically for standalone MXene electrodes. Here, both water and select organic solvents seamlessly mend impaired regions. Comprehensive evaluations around solvent types, thermal conditions, and substrate nuances underline water's unmatched healing efficacy, attributed to its innate ability to forge enduring hydrogen bonds with MXenes. Optimal healing environments range from ambient conditions to a modest 50 °C. Notably, on substrates rich in hydroxyl groups, the healing efficiency remains consistently high. The proposed healing mechanism encompasses hydrogen bonding formation, capillary action-induced expansion of interlayer spacing, solvent lubrication, Gibbs free energy minimizing MXene nanosheet rearrangement, and solvent evaporation-triggered MXene layer recombination. MXenes' resilience is further showcased by their electrical revival from profound damages, culminating in the crafting of Joule-heated circuits and heaters.

7.
Small ; 20(24): e2309785, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377279

RESUMEN

Wearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a Ti3C2Tx MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.483 mV mmHg-1, good linearity on silicone eyeballs, excellent stability under long-term pressure-release measurement, sufficient transparency with 67.8% transmittance under visible illumination, and superior biocompatibility with no discomfort when putting the MX-CLS sensor onto the Rabbit eyes. After integrating with the wireless module, users can realize real-time monitoring and warning of IOP via smartphones, the demonstrated MX-CLS device together with the IOP monitoring/display system opens up promising platforms for Ti3C2Tx materials as the base for multifunctional contact lens-based sensors and continuous and nondestructive IOP measurement system.


Asunto(s)
Lentes de Contacto Hidrofílicos , Presión Intraocular , Titanio , Presión Intraocular/fisiología , Animales , Conejos , Titanio/química , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación
8.
Small ; 20(3): e2304914, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679061

RESUMEN

Robust, ultrathin, and environmental-friendliness papers that synergize high-efficiency electromagnetic interference (EMI) shielding, personal thermal management, and wearable heaters are essential for next-generation smart wearable devices. Herein, MXene nanocomposite paper with a nacre-like structure for EMI shielding and electrothermal/photothermal conversion is fabricated by vacuum filtration of Ti3 C2 Tx MXene and modified sawdust. The hydrogen bonding and highly oriented structure enhance the mechanical properties of the modified sawdust/MXene composite paper (SM paper). The SM paper with 50 wt% MXene content shows a strength of 23 MPa and a toughness of 13 MJ·M-3 . The conductivity of the SM paper is 10 195 S·m-1 , resulting in an EMI shielding effectiveness (SE) of 67.9 dB and a specific SE value (SSE/t) of 8486 dB·cm2 ·g-1 . In addition, the SM paper exhibits excellent thermal management performance including high light/electro-to-thermal conversion, rapid Joule heating and photothermal response, and sufficient heating stability. Notably, the SM paper exhibits low infrared emissivity and distinguished infrared stealth performance, camouflaging a high-temperature heater surface of 147-81 °C. The SM-based e-skin achieves visualization of Joule heating and realizes human motions monitoring. This work presents a new strategy for designing MXene-based wearable devices with great EMI shielding, artificial intelligence, and thermal management applications.

9.
Small ; : e2404927, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252634

RESUMEN

Heterostructures of layered double hydroxides (LDHs) and MXenes have shown great promise for oxygen evolution reaction (OER) catalysts, owing to their complementary physical properties. Coupling LDHs with MXenes can potentially enhance their conductivity, stability, and OER activity. In this work, a scalable and straightforward in situ guided growth of CoFeLDH on Ti3C2Tx is introduced, where the surface chemistry of Ti3C2Tx dominates the resulting heterostructures, allowing tunable crystal domain sizes of LDHs. Combined simulation results of Monte Carlo and density functional theory (DFT) validate this guided growth mechanism. Through this way, the optimized heterostructures allow the highest OER activity of the overpotential = 301 mV and Tafel slope = 43 mV dec-1 at 10 mA cm-2, and a considerably durable stability of 0.1% decay over 200 h use, remarkably outperforming all reported LDHs-MXenes materials. DFT calculations indicate that the charge transfer in heterostructures can decrease the rate-limiting energy barrier for OER, facilitating OER activity. The combined experimental and theoretical efforts identify the participation role of MXene in heterostructures for OER reactions, providing insights into designing advanced heterostructures for robust OER electrocatalysis.

10.
Small ; : e2402143, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934343

RESUMEN

MXene is considered as a promising solid lubricant due to facile shearing ability and tuneable surface chemistry. However, it faces challenges in high-humidity environments where excessive water molecules can significantly impact its 2D structure, thus deteriorating its lubricating properties. In this work, the self-assembled monolayers are formed on MXene by surface chlorination (MXene-Cl) and fluorination (MXene-F), and their friction behaviors in high/low humidity are investigated. The results indicate that MXene-F and MXene-Cl can maintain a relatively constant friction coefficient (CoF) (MXene-F ∼0.76, MXene-Cl ∼0.48) under both high (75%) and low (25%)-relative humidity (RH) environments. Meanwhile, the MXene-F and MXene-Cl display a lower CoF than the pristine MXene (MXene CoF∼1.18) in high humidity. The above phenomena are mainly attributed to the preservation of its 2D layered structure, the increased layer spacing, and superficial partial oxidation for SAMs-functionalized MXene under high humidity during friction. Interestingly, MXene-Cl with moderate water resistance has a lower CoF than that of MXene-F with complete water resistance. The nanostructured water adsorption capacity and larger interlayer spacing of MXene-Cl make it exhibit a lower CoF compared to MXene-F. The findings of this study offer valuable guidance for tailoring MXene by surface chemical functionalization as an efficient solid lubricant in high humidity.

11.
Small ; 20(21): e2307165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098311

RESUMEN

This study provides meaningful insight into the charge storage in Ti3C2Tx MXene (M-transition metal, X-carbon, T-Cl, F, O) for electrochemical capacitor (EC) application. The experiments show that this 2D material is especially adapted for the hydrogen electrosorption under negative polarization. It is found that hydrogen bonding to the Ti3C2Tx surface occurs through interactions of various strength. Different mechanisms are suggested to explain the nature of H stored at the electrode/electrolyte interface depending on pH and potential range. For the negative potentials, both capacitive and faradaic currents are involved, and the electrode can operate in a relatively wide range. On the other hand, the narrow range of positive potentials limits whole voltage of EC. Such charge disproportion has a major impact on the performance failure of symmetric MXene-based ECs. New design of MXene cells with a wide operating voltage is introduced. To equalize the charge storage of both electrodes, the positive Ti3C2Tx electrode is replaced by the porous carbon (BP2000) with a wide working potential and a good capacitive response. Thus, EC operating voltage is considerably expanded to 1.3, 1.4, 2 V in acidic, basic, neutral medium, respectively. During cycling tests at 1 A g-1, the asymmetric cell MXene/BP2000 maintains 80% of initial capacitance after 22 000 cycles.

12.
Small ; : e2403518, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016114

RESUMEN

2D Ti3C2Tx MXene-based film electrodes with metallic conductivity and high pseudo-capacitance are of considerable interest in cutting-edge research of capacitive deionization (CDI). Further advancement in practical use is however impeded by their intrinsic limitations, e.g., tortuous ion diffusion pathway of layered stacking, vulnerable chemical stability, and swelling-prone nature of hydrophilic MXene nanosheet in aqueous environment. Herein, a nanoporous 2D/2D heterostructure strategy is established to leverage both merits of holey MXene (HMX) and holey graphene oxide (HGO) nanosheets, which optimize ion transport shortcuts, alleviate common restacking issues, and improve film's mechanical and chemical stability. In this design, the nanosized in-plane holes in both handpicked building blocks build up ion diffusion shortcuts in the composite laminates to accelerate the transport and storage of ions. As a direct outcome, the HMX/rHGO films exhibit remarkable desalination capacity of 57.91 mg g-1 and long-term stability in 500 mg L-1 NaCl solution at 1.2 V. Moreover, molecular dynamics simulations and ex situ wide angle X-ray scattering jointly demonstrate that the conductive 2D/2D networks and ultra-short ion diffusion channels play critical roles in the ion intercalation/deintercalation process of HMX/rHGO films. The study paves an alternative design concept of freestanding CDI electrodes with superior ion transport efficiency.

13.
Small ; : e2406397, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223859

RESUMEN

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

14.
Chemistry ; 30(10): e202302768, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38171767

RESUMEN

Fe2 O3 with high theoretical capacity (1007 mA h g-1 ) and low cost is a potential anode material for lithium-ion batteries (LIBs), but its practical application is restricted by its low electrical conductivity and large volume changes during lithiation/delithiation. To solve these problems, Fe2 O3 @Ti3 C2 Tx composites were synthesized by a mussel-like modification method, which relies on the self-polymerization of dopamine under mild conditions. During polymerization, the electronegative group (-OH) on dopamine can easily coordinate with Fe3+ ions as well as form hydrogen bonds with the -OH terminal group on the surface of Ti3 C2 Tx , which induces a uniform distribution of Fe2 O3 on the Ti3 C2 Tx surface and mitigates self-accumulation of MXene nanosheets. In addition, the polydopamine-derived carbon layer protects Ti3 C2 Tx from oxidation during the hydrothermal process, which can further improve the electrical conductivity of the composites and buffer the volume expansion and particle agglomeration of Fe2 O3 . As a result, Fe2 O3 @Ti3 C2 Tx anodes exhibit ~100 % capacity retention with almost no capacity loss at 0.5 A g-1 after 250 cycles, and a stable capacity of 430 mA h g-1 at 2 A g-1 after 500 cycles. The unique structural design of this work provides new ideas for the development of MXene-based composites in energy storage applications.

15.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970693

RESUMEN

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Asunto(s)
Cobre , Técnicas Electroquímicas , Glucosa , Límite de Detección , Titanio , Cobre/química , Humanos , Titanio/química , Glucosa/análisis , Glucosa/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Sudor/química , Electrodos , Oxidación-Reducción , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Nanocompuestos/química
16.
Mikrochim Acta ; 191(7): 371, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839652

RESUMEN

Industrialization and agricultural demand have both improved human life and led to environmental contamination. Especially the discharge of a lot of poisonous and harmful gases, including ammonia, ammonia pollution has become a pressing problem. High concentrations of ammonia can pose significant threats to both the environment and human health. Therefore, accurate monitoring and detection of ammonia gas are crucial. To address this challenge, we have developed an ammonia gas sensor using In(OH)3/Ti3C2Tx nanocomposites through an in-situ electrostatic self-assembly process. This sensor was thoroughly characterized using advanced techniques like XRD, XPS, BET, and TEM. In our tests, the I/M-2 sensor exhibited remarkable performance, achieving a 16.8% response to 100 ppm NH3 at room temperature, which is a 3.5-fold improvement over the pure Ti3C2Tx MXene sensor. Moreover, it provides swift response time (20 s), high response to low NH3 concentrations (≤ 10 ppm), and excellent long-term stability (30 days). These exceptional characteristics indicate the immense potential of our In(OH)3/Ti3C2Tx gas sensor in ammonia detection.

17.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065863

RESUMEN

Ammonia (NH3) potentially harms human health, the ecosystem, industrial and agricultural production, and other fields. Therefore, the detection of NH3 has broad prospects and important significance. Ti3C2Tx is a common MXene material that is great for detecting NH3 at room temperature because it has a two-dimensional layered structure, a large specific surface area, is easy to functionalize on the surface, is sensitive to gases at room temperature, and is very selective for NH3. This review provides a detailed description of the preparation process as well as recent advances in the development of gas-sensing materials based on Ti3C2Tx MXene for room-temperature NH3 detection. It also analyzes the advantages and disadvantages of various preparation and synthesis methods for Ti3C2Tx MXene's performance. Since the gas-sensitive performance of pure Ti3C2Tx MXene regarding NH3 can be further improved, this review discusses additional composite materials, including metal oxides, conductive polymers, and two-dimensional materials that can be used to improve the sensitivity of pure Ti3C2Tx MXene to NH3. Furthermore, the present state of research on the NH3 sensitivity mechanism of Ti3C2Tx MXene-based sensors is summarized in this study. Finally, this paper analyzes the challenges and future prospects of Ti3C2Tx MXene-based gas-sensitive materials for room-temperature NH3 detection.

18.
Nano Lett ; 23(16): 7379-7388, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578316

RESUMEN

The completed volumetric muscle loss (VML) regeneration remains a challenge due to the limited myogenic differentiation as well as the oxidative, inflammatory, and hypoxic microenvironment. Herein, a 2D Ti3C2Tx MXene@MnO2 nanocomposite with conductivity and microenvironment remodeling was fabricated and applied in developing a multifunctional hydrogel (FME) scaffold to simultaneously conquer these hurdles. Among them, Ti3C2Tx MXene with electroconductive ability remarkably promotes myogenic differentiation via enhancing the myotube formation and upregulating the relative expression of the myosin heavy chain (MHC) protein and myogenic genes (MyoD and MyoG) in myogenesis. The MnO2 nanoenzyme-reinforced Ti3C2Tx MXene significantly reshapes the hostile microenvironment by eliminating reactive oxygen species (ROS), regulating macrophage polarization from M1 to M2 and continuously supplying O2. Together, the FME hydrogel as a bioactive multifunctional scaffold significantly accelerates structure-functional VML regeneration in vivo and represents a multipronged strategy for the VML regeneration via electroactivity and microenvironment management.


Asunto(s)
Músculo Esquelético , Regeneración , Músculo Esquelético/fisiología , Compuestos de Manganeso/farmacología , Titanio/farmacología , Óxidos , Hidrogeles/farmacología
19.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999007

RESUMEN

Due to their cost-effectiveness, abundant resources, and suitable working potential, sodium-ion batteries are anticipated to establish themselves as a leading technology in the realm of grid energy storage. However, sodium-ion batteries still encounter challenges, including issues related to low energy density and constrained cycling performance. In this study, a self-supported electrode composed of Prussian white/KetjenBlack/MXene (TK-PW) is proposed. In the TK-PW electrode, the MXene layer is coated with Prussian white nanoparticles and KetjenBlack with high conductivity, which is conducive to rapid Na+ dynamics and effectively alleviates the expansion of the electrode. Notably, the electrode preparation method is uncomplicated and economically efficient, enabling large-scale production. Electrochemical testing demonstrates that the TK-PW electrode retains 74.9% of capacity after 200 cycles, with a discharge capacity of 69.7 mAh·g-1 at 1000 mA·g-1. Furthermore, a full cell is constructed, employing a hard carbon anode and TK-PW cathode to validate the practical application potential of the TK-PW electrode.

20.
Molecules ; 29(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542976

RESUMEN

Redox mediators comprising I-, Co3+, and Ti3C2Tx MXene were applied to dye-sensitized solar cells (DSCs). In the as-prepared DSCs (I-DSCs), wherein hole conduction occurred via the redox reaction of I-/I3- ions, the power conversion efficiency (PCE) was not altered by the addition of Ti3C2Tx MXene. The I-DSCs were exposed to light to produce Co2+/Co3+-based cells (Co-DSCs), wherein the holes were transferred via the redox reaction of Co2+/Co3+ ions. A PCE of 9.01% was achieved in a Co-DSC with Ti3C2Tx MXene (Ti3C2Tx-Co-DSC), which indicated an improvement from the PCE of a bare Co-DSC without Ti3C2Tx MXene (7.27%). It was also found that the presence of Ti3C2Tx MXene in the redox mediator increased the hole collection, dye regeneration, and electron injection efficiencies of the Ti3C2Tx-Co-DSC, leading to an improvement in both the short-circuit current and the PCE when compared with those of the bare Co-DSC without MXene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA