Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 726
Filtrar
Más filtros

Intervalo de año de publicación
1.
Exp Dermatol ; 33(1): e14966, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897113

RESUMEN

Nutrients provide vital functions in the body for sustained health, which have been shown to be related to the incidence, prevention and treatment of disease. However, limited bioavailability, loss of targeting specificity and the increased hepatic metabolism limit the utilization of nutrients. In this review, we highlight transdermal absorption of nutrients, which represents an opportunity to allow great use of many nutrients with promising human health benefits. Moreover, we describe how the various types of permeation enhancers are increasingly exploited for transdermal nutrient delivery. Chemical penetration enhancers, carrier systems and physical techniques for transdermal nutrient delivery are described, with a focus on combinatorial approaches. Although there are many carrier systems and physical techniques currently in development, with some tools currently in advanced clinical trials, relatively few products have achieved full translation to clinical practice. Challenges and further developments of these tools are discussed here in this review. This review will be useful to researchers interested in transdermal applications of permeation enhancers for the efficient delivery of nutrients, providing a reference for supporting the need to take more account of specific nutritional needs in specific states.


Asunto(s)
Sistemas de Liberación de Medicamentos , Absorción Cutánea , Humanos , Administración Cutánea , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo
2.
BMC Cancer ; 24(1): 867, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026165

RESUMEN

OBJECTIVE: To evaluate the safety and efficacy of the granisetron transdermal delivery system (GTDS) combined with Dexamethasone for preventing chemotherapy-induced nausea and vomiting (CINV) in patients receiving Capecitabine plus Oxaliplatin (CapeOX) therapy. DESIGN: Open-label, prospective, multi-center phase II trial. SETTING: Three institutions. PARTICIPANTS: Fifty-four patients scheduled to receive CapeOX chemotherapy. INTERVENTIONS: Participants received GTDS (3.1 mg applied to the upper arm 48 h before chemotherapy, replaced on day 5, and discarded on day 12) and Dexamethasone. MAIN OUTCOME MEASURES: The primary endpoint was the complete control rate of CINV. Secondary endpoints included the duration of delayed complete control, complete control rate in the acute phase, safety, and quality of life. RESULTS: The complete control rate for delayed CINV over the entire period (25-480 h) was 72.7% (95% CI 0.57-0.88). The duration of delayed complete control was 17.2 ± 4.5 days, with 51.5% of patients experiencing no nausea during the delayed phase. The complete control rate in the acute phase was 81.8% (95% CI 0.69-0.95). No serious adverse events related to the antiemetic regimen were reported. CONCLUSION: Prolonged administration of GTDS is safe and effective for preventing CINV in patients with gastrointestinal malignancies treated with CapeOX. TRIAL REGISTRATION: ClinicalTrials.gov registry (NCT05325190); registered on October 10, 2021.


Asunto(s)
Administración Cutánea , Protocolos de Quimioterapia Combinada Antineoplásica , Capecitabina , Granisetrón , Náusea , Oxaliplatino , Vómitos , Humanos , Masculino , Femenino , Granisetrón/administración & dosificación , Granisetrón/uso terapéutico , Persona de Mediana Edad , Capecitabina/administración & dosificación , Capecitabina/efectos adversos , Oxaliplatino/administración & dosificación , Oxaliplatino/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Náusea/inducido químicamente , Náusea/prevención & control , Vómitos/inducido químicamente , Vómitos/prevención & control , Vómitos/tratamiento farmacológico , Anciano , Estudios Prospectivos , Adulto , Antieméticos/administración & dosificación , Antieméticos/uso terapéutico , Calidad de Vida , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico
3.
Biomed Microdevices ; 26(1): 9, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189892

RESUMEN

There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.


Asunto(s)
Lidocaína , Polímeros , Humanos , Anestesia Local , Alcohol Polivinílico , Povidona
4.
Mol Pharm ; 21(5): 2118-2147, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38660711

RESUMEN

The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Enfermedades de la Piel , Piel , Humanos , Sistemas de Liberación de Medicamentos/métodos , Enfermedades de la Piel/tratamiento farmacológico , Piel/metabolismo , Piel/efectos de los fármacos , Nanopartículas/química , Nanopartículas/administración & dosificación , Portadores de Fármacos/química , Animales , Absorción Cutánea , Microinyecciones/métodos , Microinyecciones/instrumentación
5.
Mol Pharm ; 21(9): 4541-4552, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088690

RESUMEN

Nanoparticle-loaded dissolving microneedles (DMNs) have attracted increasing attention due to their ability to provide high drug loading, adjustable drug release behavior, and enhanced therapeutic efficiency. However, such delivery systems still face unsatisfied drug delivery efficiency due to insufficient driving force to promote nanoparticle penetration and the lack of in vivo fate studies to guide formulation design. Herein, an aggregation-caused quenching (ACQ) probe (P4) was encapsulated in l-arginine (l-Arg)-based nanomicelles, which was further formulated into nitric oxide (NO)-propelled nanomicelle-integrated DMNs (P4/l-Arg NMs@DMNs) to investigate their biological fate. The P4 probe could emit intense fluorescence signals in intact nanomicelles, while quenching with the dissociation of nanomicelles, providing a "distinguishable" method for tracking the fate of nanomicelles at a different status. l-Arg was demonstrated to self-generate NO under the tumor microenvironment with excessive reactive oxygen species (ROS), providing a pneumatic force to promote the penetration of nanomicelles in both three-dimensional (3D)-cultured tumor cells and melanoma-bearing mice. Compared with passive microneedles (P4 NMs@DMNs) without a NO propellant, the P4/l-Arg NMs@DMNs possessed a good NO production performance and higher nanoparticle penetration capacity. In conclusion, this study offered an ACQ probe-based biological fate tracking approach to demonstrate the potential of NO-propelled nanoparticle-loaded DMNs in penetration enhancement for topical tumor therapy.


Asunto(s)
Arginina , Sistemas de Liberación de Medicamentos , Micelas , Agujas , Óxido Nítrico , Animales , Óxido Nítrico/metabolismo , Óxido Nítrico/administración & dosificación , Óxido Nítrico/análisis , Ratones , Arginina/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Humanos , Microambiente Tumoral/efectos de los fármacos , Liberación de Fármacos , Ratones Endogámicos C57BL , Melanoma Experimental/tratamiento farmacológico
6.
Mol Pharm ; 21(9): 4450-4464, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39163171

RESUMEN

Microneedle (MN) patches are gaining increasing attention as a cost-effective technology for delivering drugs directly into the skin. In the present study, two different 3D printing processes were utilized to produce coated MNs, namely, digital light processing (DLP) and semisolid extrusion (SSE). Donepezil (DN), a cholinesterase inhibitor administered for the treatment of Alzheimer's disease, was incorporated into the coating material. Physiochemical characterization of the coated MNs confirmed the successful incorporation of donepezil as well as the stability and suitability of the materials for transdermal delivery. Optical microscopy and SEM studies validated the uniform weight distribution and precise dimensions of the MN arrays, while mechanical testing ensured the MNs' robustness, ensuring efficient skin penetration. In vitro studies were conducted to evaluate the produced transdermal patches, indicating their potential use in clinical treatment. Permeation studies revealed a significant increase in DN permeation compared to plain coating material, affirming the effectiveness of the MNs in enhancing transdermal drug delivery. Confocal laser scanning microscopy (CLSM) elucidated the distribution of the API, within skin layers, demonstrating sustained drug release and transcellular transport pathways. Finally, cell studies were also conducted on NIH3T3 fibroblasts to evaluate the biocompatibility and safety of the printed objects for transdermal applications.


Asunto(s)
Administración Cutánea , Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Donepezilo , Sistemas de Liberación de Medicamentos , Agujas , Impresión Tridimensional , Donepezilo/administración & dosificación , Donepezilo/química , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Células 3T3 NIH , Sistemas de Liberación de Medicamentos/métodos , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/química , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Liberación de Fármacos , Parche Transdérmico , Humanos
7.
Bioorg Chem ; 152: 107719, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173226

RESUMEN

Glutathione (GSH) exhibits considerable potential in the cosmetic industry for reducing intracellular tyrosinase activity and inhibiting melanin synthesis. However, its efficacy is hindered by limited permeability, restricting its ability to reach the basal layer of the skin where melanin production occurs. The transdermal enhancer peptide TD1 has emerged as a promising strategy to facilitate the transdermal transfer of proteins or peptides by creating intercellular gaps in keratinocytes, providing access to the basal layer. The primary objective of this study is to enhance the transdermal absorption capacity of GSH while augmenting its inhibitory effect on melanin. Two coupling structures were designed for investigation: linear (TD1-linker-GSH) and branched (TD1-GSH). The study examined the impact of the peptide skeleton on melanin inhibition ability. Our findings revealed that the linear structure not only inhibited synthetic melanin production in B16F10 cells through a direct pathway but also through a paracrine pathway, demonstrating a significant tyrosinase inhibition of nearly 70 %, attributed to the paracrine effect of human keratinocyte HaCaT. In pigmentation models of guinea pigs and zebrafish, the application of TD1-linker-GSH significantly reduced pigmentation. Notably, electric two-photon microscopy demonstrated that TD1-linker-GSH exhibited significant transdermal ability, penetrating 158.67 ± 9.28 µm into the skin of living guinea pigs. Molecular docking analysis of the binding activity with tyrosinase revealed that both TD1-linker-GSH and TD1-GSH occupy the same active pocket, with TD1-linker-GSH binding more tightly to tyrosinase. These results provide a potential foundation for therapeutic approaches aimed at enriched pigmentation and advance our understanding of the mechanisms underlying melanogenesis inhibition.


Asunto(s)
Administración Cutánea , Glutatión , Melaninas , Monofenol Monooxigenasa , Pez Cebra , Melaninas/metabolismo , Animales , Humanos , Cobayas , Glutatión/metabolismo , Glutatión/química , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Péptidos/administración & dosificación , Ratones , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/administración & dosificación , Melanogénesis
8.
J Nanobiotechnology ; 22(1): 152, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575979

RESUMEN

Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Polisacáridos , Infección de Heridas , Ratones , Animales , Ácido Hialurónico/farmacología , Fosfatidilinositol 3-Quinasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cicatrización de Heridas , Antiinfecciosos/farmacología , Infección de Heridas/tratamiento farmacológico , Inflamación
9.
J Nanobiotechnology ; 22(1): 272, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773580

RESUMEN

BACKGROUND: Transdermal delivery of sparingly soluble drugs is challenging due to their low solubility and poor permeability. Deep eutectic solvent (DES)/or ionic liquid (IL)-mediated nanocarriers are attracting increasing attention. However, most of them require the addition of auxiliary materials (such as surfactants or organic solvents) to maintain the stability of formulations, which may cause skin irritation and potential toxicity. RESULTS: We fabricated an amphiphilic DES using natural oxymatrine and lauric acid and constructed a novel self-assembled reverse nanomicelle system (DES-RM) based on the features of this DES. Synthesized DESs showed the broad liquid window and significantly solubilized a series of sparingly soluble drugs, and quantitative structure-activity relationship (QSAR) models with good prediction ability were further built. The experimental and molecular dynamics simulation elucidated that the self-assembly of DES-RM was adjusted by noncovalent intermolecular forces. Choosing triamcinolone acetonide (TA) as a model drug, the skin penetration studies revealed that DES-RM significantly enhanced TA penetration and retention in comparison with their corresponding DES and oil. Furthermore, in vivo animal experiments demonstrated that TA@DES-RM exhibited good anti-psoriasis therapeutic efficacy as well as biocompatibility. CONCLUSIONS: The present study offers innovative insights into the optimal design of micellar nanodelivery system based on DES combining experiments and computational simulations and provides a promising strategy for developing efficient transdermal delivery systems for sparingly soluble drugs.


Asunto(s)
Administración Cutánea , Micelas , Absorción Cutánea , Solubilidad , Solventes , Animales , Solventes/química , Piel/metabolismo , Piel/efectos de los fármacos , Ratones , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Relación Estructura-Actividad Cuantitativa , Masculino , Simulación de Dinámica Molecular , Portadores de Fármacos/química
10.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34551974

RESUMEN

Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8+ T cells and CD4+ T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printed microneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Impresión Tridimensional/instrumentación , Vacunación/métodos , Vacunas/administración & dosificación , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos , Femenino , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología
11.
Int J Biometeorol ; 68(6): 1061-1072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38427095

RESUMEN

Pelotherapy treatments in thermal spas, which utilize peloids composed of clay minerals mixed with saltwater or mineral-medicinal water, can have various effects on spa users, ranging from therapeutic to potential adverse reactions. Despite the widespread use of peloids, comprehensive information on the penetration and permeation of essential and potentially toxic elements into deeper layers of the skin during pelotherapy is limited. Understanding the concentrations of these elements is crucial for evaluating therapeutic benefits and ensuring safety. This study investigates the in vitro availability and absorption of calcium, magnesium, and potentially toxic elements in two peloids, considering their formulation matrix. To replicate the pelotherapy methodology, an in vitro permeation experiment was conducted using a vertical diffusion chamber (Franz cells) and a biological system with human skin membranes from five Caucasian women, age range between 25 and 51 years. The experiment involved heating the peloids to 45℃. The results emphasize the possible transport properties of chemical elements in peloids, providing valuable information related to potential therapeutic efficacy and safety considerations. Despite no apparent differences between peloids' chemical composition, the method identified permeation variations among chemical elements. The methodology employed in this study adheres to the guidelines outlined by OECD for analyzing skin absorption through an in vitro approach. Furthermore, it aligns with the associated OECD guidance document for conducting skin absorption studies. The replicability of this methodology not only facilitates the analysis of peloids pre-formulation but also provides a robust means to evaluate the effectiveness of therapeutic elements during topical administration, particularly those with potential toxicity concerns.


Asunto(s)
Calcio , Magnesio , Absorción Cutánea , Humanos , Magnesio/farmacocinética , Magnesio/metabolismo , Proyectos Piloto , Adulto , Femenino , Calcio/farmacocinética , Calcio/análisis , Persona de Mediana Edad , Peloterapia , Piel/metabolismo , Técnicas In Vitro
12.
Chem Pharm Bull (Tokyo) ; 72(3): 319-323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508724

RESUMEN

Auraptene (Aur) is a naturally occurring monoterpene coumarin ether that exhibits numerous therapeutic properties. Its high lipophilicity and low skin penetration, however, limit its potential application for local and transdermal delivery. Biocompatible non-ionic sugar esters (SEs) possess beneficial properties for the development of transdermal formulations in delivering pharmaceutically challenging molecules such as graphene and Aur. In the present study, we conducted a series of experiments to demonstrate the effect of several previously unstudied SEs on the skin permeation and distribution of Aur by preparing gel- and dispersion-type formulations. Skin permeation and deposition experiments were conducted using a Franz diffusion cell with rat skin as the membrane. The dispersion-type formulations prepared using SEs had higher entrapment efficiency, as well as better skin permeation and retention profiles. The dispersion-type formulation containing sucrose palmitate (sSP) exhibited the highest skin permeation over 8 h. Notably, the enhancement effects on Aur concentration in full-thickness skin after the application of the dispersion-type formulation was higher than those of the control formulation. These results indicated that the prepared formulation has potential for use in the transdermal delivery of Aur in pharmaceutical and cosmetic products.


Asunto(s)
Absorción Cutánea , Tensoactivos , Ratas , Animales , Azúcares , Ésteres , Administración Cutánea , Cumarinas
13.
Arch Pharm (Weinheim) ; : e2400538, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268798

RESUMEN

Current topical formulations containing vitamin C face limitations in therapeutic effectiveness due to the skin's selective properties that impede drug deposition. Consequently, the widespread use of toxic and irritating chemical permeation enhancers is common. Hereby, we investigated enzymatically derived fatty acid ascorbyl esters (FAAEs) obtained using natural oils for their skin permeation properties using the Strat-M® skin model in a Franz cell diffusion study. By evaluating various cosmetic formulations without added enhancers, we found that emulgel is most suitable for enhancing the cutaneous and transdermal delivery of FAAEs. Furthermore, medium-chain coconut oil-derived FAAEs exhibited faster diffusion rates compared to sunflower oil-based FAAEs with long-side acyl residues, including the commonly applied ascorbyl palmitate. Experimental data were successfully fitted using the Peppas and Sahlin model, which accounted for a lag phase and the combined effect of Fickian diffusion and polymer relaxation. In the case of long-chain esters, the lag phase was prolonged, and the calculated effective diffusion coefficients (Deff) were lower compared to medium-chain FAAEs. Accordingly, the highest Deff value was observed for ascorbyl caprylate, being even 60 times higher than for ascorbyl palmitate. These results suggest the emerging potential of emulgel with incorporated coconut oil-derived FAAEs for efficiently delivering vitamin C into the skin.

14.
Drug Dev Ind Pharm ; 50(6): 511-523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718267

RESUMEN

OBJECTIVES: This research aimed to overcome challenges posed by cefepime excessive elimination rate and poor patient compliance by developing transdermal delivery system using nano-transfersomes based chitosan gel. METHODS: Rotary evaporation-sonication method and the Box-Behnken model were used to prepare cefepime loaded nano-transfersomes (CPE-NTFs). The physiochemical characterization of CPE-NTFs were analyzed including DLS, deformability index, DSC and antimicrobial study. Optimized CPE-NTFs loaded into chitosan gel and appropriately characterized. In vitro release, ex vivo and in vivo studies were performed. RESULTS: The CPE-NTFs were physically stable with particle size 222.6 ± 1.8 nm, polydispersity index 0.163 ± 0.02, zeta potential -20.8 ± 0.1 mv, entrapment efficiency 81.4 ± 1.1% and deformability index 71 ± 0.2. DSC analysis confirmed successful drug loading and thermal stability. FTIR analysis showed no chemical interaction among the excipients of CPE-NTFs gel. The antibacterial activity demonstrated a remarkable reduction in the minimum inhibitory concentration of cefepime when incorporated into nano-transfersomes. CPE-NTFs based chitosan gel (CPE-NTFs gel) showed significant physicochemical properties. In vitro release studies exhibited sustained release behavior over 24 h, and ex vivo studies indicated enhanced permeation and retention compared to conventional cefepime gel. In vivo skin irritation studies confirmed CPE-NTFs gel was nonirritating and biocompatible for transdermal delivery. CONCLUSION: This research showed nano-transfersomes based chitosan gel is a promising approach for cefepime transdermal delivery and provides sustained release of cefepime.


Asunto(s)
Administración Cutánea , Antibacterianos , Cefepima , Quitosano , Geles , Tamaño de la Partícula , Absorción Cutánea , Piel , Quitosano/química , Cefepima/administración & dosificación , Cefepima/farmacocinética , Cefepima/química , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/química , Antibacterianos/farmacología , Geles/química , Animales , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Ratas , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Pruebas de Sensibilidad Microbiana , Masculino , Portadores de Fármacos/química , Nanopartículas/química , Ratas Wistar
15.
J Microencapsul ; 41(2): 127-139, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38410926

RESUMEN

Aim of the current study is to develop a microemulsion gel for transdermal delivery of tapentadol hydrochloride. Microemulsion was developed using phase diagram and subjected to assay, globule size, PDI, zeta potential, TEM and in vitro drug release studies. The optimized microemulsion was converted into gel using carbopol 934 NF and evaluated for viscosity, spreadability, in vitro, ex vivo, FTIR, DSC, stability and skin irritation studies. The mean globule size, PDI, zeta potential and in vitro drug release of microemulsion were found 247.3 nm, 0.298, -17.6 mV and 98.42% respectively. In vitro and ex vivo drug release of gel was found 92.2% and 88.6% in 24 h. Viscosity and spreadability results indicated ease of application and no incompatibility was observed from FTIR studies. The skin irritation studies showed absence of erythema. Key findings from the current research concluded that microemulsion gel was suitable for effective transdermal delivery.


Asunto(s)
Inflamación , Absorción Cutánea , Humanos , Tapentadol , Geles , Administración Cutánea , Liberación de Fármacos
16.
Molecules ; 29(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398519

RESUMEN

To enhance the bioavailability and antihypertensive effect of the anti-depressant drug citalopram hydrobromide (CTH) we developed a sustained-release transdermal delivery system containing CTH. A transdermal diffusion meter was first used to determine the optimal formulation of the CTH transdermal drug delivery system (TDDS). Then, based on the determined formulation, a sustained-release patch was prepared; its physical characteristics, including quality, stickiness, and appearance, were evaluated, and its pharmacokinetics and irritation to the skin were evaluated by applying it to rabbits and rats. The optimal formulation of the CTH TDDS was 49.2% hydroxypropyl methyl cellulose K100M, 32.8% polyvinylpyrrolidone K30, 16% oleic acid-azone, and 2% polyacrylic acid resin II. The system continuously released an effective dose of CTH for 24 h and significantly enhanced its bioavailability, with a higher area under the curve, good stability, and no skin irritation. The developed CTH TDDS possessed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it has the potential for clinical application as an antidepressant.


Asunto(s)
Citalopram , Absorción Cutánea , Ratas , Conejos , Animales , Citalopram/farmacología , Citalopram/metabolismo , Preparaciones de Acción Retardada/farmacología , Administración Cutánea , Piel , Sistemas de Liberación de Medicamentos , Parche Transdérmico
17.
Molecules ; 29(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39339284

RESUMEN

Current transdermal drug delivery technologies, like patches and ointments, effectively deliver low molecular weight drugs through the skin. However, delivering larger, hydrophilic drugs and macromolecules remains a challenge. In the present study, we developed novel transdermal nanoneedle patches containing levofloxacin-loaded modified chitosan nanoparticles. Chitosan was chemically modified with transcutol in three ratios (1/1, 1/2, 1/3, w/w), and the optimum ratio was used for nanoparticle fabrication via the ionic gelation method. The successful modification was confirmed using ATR-FTIR spectroscopy, while DLS results revealed that only the 1/3 ratio afforded suitably sized particles of 220 nm. After drug encapsulation, the particle size increased to 435 nm, and the final formulations were examined via XRD and an in vitro dissolution test, which suggested that the nanoparticles reach 60% release in a monophasic pattern at 380 h. We then prepared transdermal patches with pyramidal geometry nanoneedles using different poly(lactic acid)/poly(ethylene adipate) (PLA/PEAd) polymer blends of varying ratios, which were characterized in terms of morphology and mechanical compressive strength. The 90/10 blend exhibited the best mechanical properties and was selected for further testing. Ex vivo permeation studies proved that the nanoneedle patches containing drug-loaded nanoparticles achieved the highest levofloxacin permeation (88.1%).


Asunto(s)
Administración Cutánea , Quitosano , Levofloxacino , Nanopartículas , Poliésteres , Levofloxacino/administración & dosificación , Levofloxacino/química , Quitosano/química , Nanopartículas/química , Poliésteres/química , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Parche Transdérmico , Liberación de Fármacos , Antibacterianos/administración & dosificación , Antibacterianos/química , Absorción Cutánea , Piel/metabolismo
18.
Pharm Dev Technol ; 29(7): 703-718, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39023747

RESUMEN

Letrozole (LTZ) is used as first-line treatment for hormone-positive breast cancer (BC) in postmenopausal women. However, its poor aqueous solubility and permeability have reduced its clinical efficacy. Herein, we developed LTZ-nanotransferosomes (LTZ-NT) to address above mentioned issues. The LTZ-NT were optimized statistically using Design Expert® followed by their characterization via dynamic light scattering (DLS), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Differential scanning calorimetry (DSC). The optimized LTZ-NT was incorporated into 1% chitosan-gel to develop LTZ-NTG. Moreover, in vitro drug release and ex vivo permeation of LTZ-NTG were performed and compared with LTZ-dispersion and LTZ-NT. Additionally, skin irritability and histopathology of LTZ-NTG were investigated. Furthermore, in vitro antitumor study of LTZ-NTG was investigated in BC cell lines. The optimized LTZ-NT showed suitable zeta potential (30.4 mV), spherical size (162.5 nm), and excellent entrapment efficiency (88.04%). Moreover, LTZ-NT exhibited suitable thermal behavior and no interactions among its excipients. In addition, LTZ-NTG had an optimal pH (5.6) and a suitable viscosity. A meaningfully sustained release and improved permeation of LTZ was observed from LTZ-NTG. Additionally, LTZ-NTG showed significantly enhanced cell death of MCF-7 and MCC-7 cells. It can be concluded that LTZ-NTG has the potential to deliver chemotherapeutic agents for possible treatment of BC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Liberación de Fármacos , Geles , Letrozol , Letrozol/administración & dosificación , Letrozol/farmacocinética , Humanos , Femenino , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Geles/química , Nanopartículas/química , Células MCF-7 , Liposomas , Línea Celular Tumoral , Absorción Cutánea/efectos de los fármacos , Ratas , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Tamaño de la Partícula , Quitosano/química
19.
AAPS PharmSciTech ; 25(5): 126, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834910

RESUMEN

In the dynamic landscape of pharmaceutical advancements, the strategic application of active pharmaceutical ingredients to the skin through topical and transdermal routes has emerged as a compelling avenue for therapeutic interventions. This non-invasive approach has garnered considerable attention in recent decades, with numerous attempts yielding approaches and demonstrating substantial clinical potential. However, the formidable barrier function of the skin, mainly the confinement of drugs on the upper layers of the stratum corneum, poses a substantial hurdle, impeding successful drug delivery via this route. Ultradeformable vesicles/carriers (UDVs), positioned within the expansive realm of nanomedicine, have emerged as a promising tool for developing advanced dermal and transdermal therapies. The current review focuses on improving the passive dermal and transdermal targeting capacity by integrating functionalization groups by strategic surface modification of drug-loaded UDV nanocarriers. The present review discusses the details of case studies of different surface-modified UDVs with their bonding strategies and covers the recent patents and clinical trials. The design of surface modifications holds promise for overcoming existing challenges in drug delivery by marking a significant leap forward in the field of pharmaceutical sciences.


Asunto(s)
Administración Cutánea , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Absorción Cutánea , Piel , Humanos , Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Absorción Cutánea/fisiología , Absorción Cutánea/efectos de los fármacos , Portadores de Fármacos/química , Animales , Nanopartículas/química , Propiedades de Superficie , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Nanomedicina/métodos
20.
Saudi Pharm J ; 32(5): 102050, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577488

RESUMEN

This study aimed to formulate nano-cubosomes (NCs) co-loaded with capsaicin (CAP) and thiocolchicoside (TCS) to enhance their bioavailability and minimize associated potential side effects through transdermal delivery alongside their synergistic activity. Twenty seven (27) nano-cubosomal dispersions were prepared according to Box-Behnken factorial design and the effect of CAP, TCS, glyceryl mono oleate (GMO) and poloxamer 407 (P407) concentrations on particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were assessed. The results revealed that the optimized formulation exhibited a mean droplet size of 503 ± 10.3 nm, PDI of 0.405 ± 0.02, zeta potential of -10.0 ± 1.70 mV and entrapment efficiency of 86.9 ± 3.56 %. The in vivo anti-inflammatory effect of optimized formulation was studied in rats by injecting carrageenan to induce edema. The results of in vivo study showed that transdermal application of nano-cubosomes co-loaded with CAP and TCS significantly (p value < 0.05) improved carrageenan induced inflammation compared with standard treatment. The analgesic activity of optimized formulation was evaluated in rats by using Eddy's hot plate method. The findings of analgesic activity illustrated that the analgesic effects exhibited by test formulation may be associated with increased licking period and inhibition of prostaglandins level. In conclusion, the transdermal application of NCs co-loaded with CAP and TCS may be a promising delivery system for enhancing their bioavailability as well as synergistic analgesic and anti-inflammatory activity in gout management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA