Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2204229119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095217

RESUMEN

Forgetting is an essential component of the brain's memory management system, providing a balance to memory formation processes by removing unused or unwanted memories, or by suppressing their expression. However, the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the memory suppressor gene, sickie, functions in a single dopamine neuron (DAn) by supporting the process of active forgetting in Drosophila. RNAi knockdown (KD) of sickie impairs forgetting by reducing the Ca2+ influx and DA release from the DAn that promotes forgetting. Coimmunoprecipitation/mass spectrometry analyses identified cytoskeletal and presynaptic active zone (AZ) proteins as candidates that physically interact with Sickie, and a focused RNAi screen of the candidates showed that Bruchpilot (Brp)-a presynaptic AZ protein that regulates calcium channel clustering and neurotransmitter release-impairs active forgetting like sickie KD. In addition, overexpression of brp rescued the impaired forgetting of sickie KD, providing evidence that they function in the same process. Moreover, we show that sickie KD in the DAn reduces the abundance and size of AZ markers but increases their number, suggesting that Sickie controls DAn activity for forgetting by modulating the presynaptic AZ structure. Our results identify a molecular and circuit mechanism for normal levels of active forgetting and reveal a surprising role of Sickie in maintaining presynaptic AZ structure for neurotransmitter release.


Asunto(s)
Dopamina , Proteínas de Drosophila , Drosophila melanogaster , Memoria , Proteínas del Tejido Nervioso , Animales , Dopamina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica
2.
J Neurosci ; 42(34): 6620-6636, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35853718

RESUMEN

Active forgetting occurs in many species, but how behavioral control mechanisms influence which memories are forgotten remains unknown. We previously found that when rats need to retrieve a memory to guide exploration, it reduces later retention of other competing memories encoded in that environment. As with humans, this retrieval-induced forgetting relies on prefrontal control processes. Dopaminergic input to the prefrontal cortex is important for executive functions and cognitive flexibility. We found that, in a similar way, retrieval-induced forgetting of competing memories in male rats requires prefrontal dopamine signaling through D1 receptors. Blockade of medial prefrontal cortex D1 receptors as animals encountered a familiar object impaired active forgetting of competing object memories as measured on a later long-term memory test. Inactivation of the ventral tegmental area produced the same pattern of behavior, a pattern that could be reversed by concomitant activation of prefrontal D1 receptors. We observed a bidirectional modulation of retrieval-induced forgetting by agonists and antagonists of D1 receptors in the medial prefrontal cortex. These findings establish the essential role of prefrontal dopamine in the active forgetting of competing memories, contributing to the shaping of retention in response to the behavioral goals of an organism.SIGNIFICANCE STATEMENT Forgetting is a ubiquitous phenomenon that is actively promoted in many species. The very act of remembering some experiences can cause forgetting of others, in both humans and rats. This retrieval-induced forgetting process is thought to be driven by inhibitory control signals from the prefrontal cortex that target areas where the memories are stored. Here we started disentangling the neurochemical signals in the prefrontal cortex that are essential to retrieval-induced forgetting. We found that, in rats, the release of dopamine in this area, acting through D1 receptors, was essential to causing active forgetting of competing memories. Inhibition of D1 receptors impaired forgetting, while activation increased forgetting. These findings are important, because the mechanisms of active forgetting and their linkage to goal-directed behavior are only beginning to be understood.


Asunto(s)
Dopamina , Recuerdo Mental , Animales , Humanos , Masculino , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Ratas , Receptores de Dopamina D1/metabolismo , Área Tegmental Ventral/fisiología
3.
Neurobiol Learn Mem ; 155: 474-485, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30243850

RESUMEN

Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.


Asunto(s)
Ganglios de Invertebrados/metabolismo , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Animales , Aplysia , Conducta Animal , Perfilación de la Expresión Génica
4.
Neurosci Biobehav Rev ; 131: 953-963, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655655

RESUMEN

Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.


Asunto(s)
Dopamina , Área Tegmental Ventral , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Humanos , Aprendizaje/fisiología , Núcleo Accumbens/fisiología
5.
Neuron ; 95(3): 490-503, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28772119

RESUMEN

Pioneering research studies, beginning with those using Drosophila, have identified several molecular and cellular mechanisms for active forgetting. The currently known mechanisms for active forgetting include neurogenesis-based forgetting, interference-based forgetting, and intrinsic forgetting, the latter term describing the brain's chronic signaling systems that function to slowly degrade molecular and cellular memory traces. The best-characterized pathway for intrinsic forgetting includes "forgetting cells" that release dopamine onto engram cells, mobilizing a signaling pathway that terminates in the activation of Rac1/Cofilin to effect changes in the actin cytoskeleton and neuron/synapse structure. Intrinsic forgetting may be the default state of the brain, constantly promoting memory erasure and competing with processes that promote memory stability like consolidation. A better understanding of active forgetting will provide insights into the brain's memory management system and human brain disorders that alter active forgetting mechanisms.


Asunto(s)
Trastornos de la Memoria/fisiopatología , Memoria/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Encéfalo/fisiología , Humanos
6.
Curr Biol ; 26(17): 2351-7, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27593377

RESUMEN

Forgetting is a universal feature for most types of memories. The best-defined and extensively characterized behaviors that depict forgetting are natural memory decay and interference-based forgetting [1, 2]. Molecular mechanisms underlying the active forgetting remain to be determined for memories in vertebrates. Recent progress has begun to unravel such mechanisms underlying the active forgetting [3-11] that is induced through the behavior-dependent activation of intracellular signaling pathways. In Drosophila, training-induced activation of the small G protein Rac1 mediates natural memory decay and interference-based forgetting of aversive conditioning memory [3]. In mice, the activation of photoactivable-Rac1 in recently potentiated spines in a motor learning task erases the motor memory [12]. These lines of evidence prompted us to investigate a role for Rac1 in time-based natural memory decay and interference-based forgetting in mice. The inhibition of Rac1 activity in hippocampal neurons through targeted expression of a dominant-negative Rac1 form extended object recognition memory from less than 72 hr to over 72 hr, whereas Rac1 activation accelerated memory decay within 24 hr. Interference-induced forgetting of this memory was correlated with Rac1 activation and was completely blocked by inhibition of Rac1 activity. Electrophysiological recordings of long-term potentiation provided independent evidence that further supported a role for Rac1 activation in forgetting. Thus, Rac1-dependent forgetting is evolutionarily conserved from invertebrates to vertebrates.


Asunto(s)
Hipocampo/fisiología , Memoria , Neuropéptidos/genética , Reconocimiento en Psicología , Proteína de Unión al GTP rac1/genética , Animales , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Neuropéptidos/metabolismo , Percepción Visual , Proteína de Unión al GTP rac1/metabolismo
7.
Prog Brain Res ; 208: 39-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24767478

RESUMEN

Failure to remember, or forgetting, is a phenomenon familiar to everyone and despite more than a century of scientific inquiry, why we forget what we once knew remains unclear. If the brain marshals significant resources to form and store memories, why is it that these memories become lost? In the last century, psychological studies have divided forgetting into decay theory, in which memory simply dissipates with time, and interference theory, in which additional learning or mental activity hinders memory by reducing its stability or retrieval (for review, Dewar et al., 2007; Wixted, 2004). Importantly, these psychological models of forgetting posit that forgetting is a passive property of the brain and thus a failure of the brain to retain memories. However, recent neuroscience research on olfactory memory in Drosophila has offered evidence for an alternative conclusion that forgetting is an "active" process, with specific, biologically regulated mechanisms that remove existing memories (Berry et al., 2012; Shuai et al., 2010). Similar to the bidirectional regulation of cell number by mitosis and apoptosis, protein concentration by translation and lysosomal or proteomal degradation, and protein phosphate modification by kinases and phosphatases, biologically regulated memory formation and removal would be yet another example in biological systems where distinct and separate pathways regulate the creation and destruction of biological substrates.


Asunto(s)
Trastornos de la Memoria/fisiopatología , Memoria/fisiología , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Drosophila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA